⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 readme

📁 LIBSVM源码。LIBSVM 是台湾大学林智仁(Chih-Jen Lin)博士等开发设计的一个操作简单、 易于使用、快速有效的通用SVM 软件包
💻
字号:
This code uses dense vectors to store data instances. If most featurevalues are non-zeros, the training/testing time is faster than thestandard libsvm, which implement sparse vectors.Experimental Setting:We select four concepts, animal, people, sky, and weather, fromMediaMill Challenge Problem for this experiment. All instances are120-dimension dense vectors. We compare the standard libsvm and thismodification.The experimental procedure performs parameter selection (30 parametersets), model training (best parameters), test data predictions. Thereare 30,993 and 12,914 records in training (used in parameter selectionand model training stages) and testing (used in prediction stage)sets, respectively. The following table shows the results.(1) parameter-selection execution time (sec.):          original    dense        change           libsvm      repr.        ratioanimal     2483.23     1483.02     -40.3%people    22844.26    13893.21     -39.2%sky       13765.39     8460.06     -38.5%weather    2240.01     1325.32     -40.1%AVERAGE   10083.17     6540.46     -39.1%(2) model-training execution time (sec.):          original    dense        change           libsvm      repr.        ratioanimal     113.238      70.085     -38.1% people     725.995     451.244     -37.8%sky       1234.881     784.071     -36.5%weather    123.179      76.532     -37.9%AVERAGE    549.323     345.483     -37.1%(3) prediction execution time (sec.):          original    dense       change          libsvm      repr..      ratioanimal      12.226        6.895    -43.6%people      99.268       54.855    -44.7%sky         78.069       42.417    -45.7%weather     10.843        6.495    -44.9%AVERAGE     50.102       27.666    -44.8% Overall, dense-representation libsvm saves on average 39.1%, 37.1%,and 44.8% of the execution time in parameter selection, model trainingand prediction stages, respectively. This modification is thus usefulfor dense data sets.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -