📄 proc-xscale.s
字号:
/* * linux/arch/arm/mm/proc-xscale.S * * Author: Nicolas Pitre * Created: November 2000 * Copyright: (C) 2000, 2001 MontaVista Software Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * MMU functions for the Intel XScale CPUs * * 2001 Aug 21: * some contributions by Brett Gaines <brett.w.gaines@intel.com> * Copyright 2001 by Intel Corp. * * 2001 Sep 08: * Completely revisited, many important fixes * Nicolas Pitre <nico@cam.org> */#include <linux/config.h>#include <linux/linkage.h>#include <asm/assembler.h>#include <asm/constants.h>#include <asm/procinfo.h>#include <asm/hardware.h>#include <asm/proc/pgtable.h>/* * Some knobs for cache allocation policy. * Allocate on write may or may not be beneficial depending on the memory * usage pattern of your main application. Write through cache is definitely * a performance loss in most cases, but might be used for special purposes. */#define PMD_CACHE_WRITE_ALLOCATE 1#define PTE_CACHE_WRITE_ALLOCATE 1#define CACHE_WRITE_THROUGH 0/* * There are errata that say that dirty status bits in the cache may get * corrupted. The workaround significantly affects performance, and the bug * _might_ just not be that visible or critical to you, so it is configurable. * Let's hope a future core revision will tell us this was only a bad dream. * But in the mean time the risk and tradeoff is yours to decide.... */#ifdef CONFIG_XSCALE_CACHE_ERRATA#undef CACHE_WRITE_THROUGH#define CACHE_WRITE_THROUGH 1#endif/* * This is the maximum size of an area which will be flushed. If the area * is larger than this, then we flush the whole cache */#define MAX_AREA_SIZE 32768/* * the cache line size of the I and D cache */#define CACHELINESIZE 32/* * the size of the data cache */#define CACHESIZE 32768/* * and the page size */#define PAGESIZE 4096/* * Virtual address used to allocate the cache when flushed * * This must be an address range which is _never_ used. It should * apparently have a mapping in the corresponding page table for * compatibility with future CPUs that _could_ require it. For instance we * don't care. * * This must be aligned on a 2*CACHESIZE boundary. The code selects one of * the 2 areas in alternance each time the clean_d_cache macro is used. * Without this the XScale core exhibits cache eviction problems and no one * knows why. * * Reminder: the vector table is located at 0xffff0000-0xffff0fff. */#define CLEAN_ADDR 0xfffe0000/* * This macro is used to wait for a CP15 write and is needed * when we have to ensure that the last operation to the co-pro * was completed before continuing with operation. */ .macro cpwait, rd mrc p15, 0, \rd, c2, c0, 0 @ arbitrary read of cp15 mov \rd, \rd @ wait for completion sub pc, pc, #4 @ flush instruction pipeline .endm .macro cpwait_ret, lr, rd mrc p15, 0, \rd, c2, c0, 0 @ arbitrary read of cp15 sub pc, \lr, \rd, LSR #32 @ wait for completion and @ flush instruction pipeline .endm#if !CACHE_WRITE_THROUGH/* * This macro cleans the entire dcache using line allocate. * The main loop has been unrolled to reduce loop overhead. * rd and rs are two scratch registers. */ .macro clean_d_cache, rd, rs ldr \rs, =clean_addr ldr \rd, [\rs] eor \rd, \rd, #CACHESIZE str \rd, [\rs] add \rs, \rd, #CACHESIZE1: mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line add \rd, \rd, #CACHELINESIZE mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line add \rd, \rd, #CACHELINESIZE mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line add \rd, \rd, #CACHELINESIZE mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line add \rd, \rd, #CACHELINESIZE teq \rd, \rs bne 1b .endm .macro clean_d_line, rd mcr p15, 0, \rd, c7, c10, 1 .endm .dataclean_addr: .word CLEAN_ADDR#else/* * If cache is write-through, there is no need to clean it. * Simply invalidating will do. */ .macro clean_d_cache, rd, rs mcr p15, 0, \rd, c7, c6, 0 .endm /* let's try to skip this needless operations at least within loops */ .macro clean_d_line, rd .endm#endif .text/* * cpu_xscale_data_abort() * * obtain information about current aborted instruction. * Note: we read user space. This means we might cause a data * abort here if the I-TLB and D-TLB aren't seeing the same * picture. Unfortunately, this does happen. We live with it. * * r2 = address of aborted instruction * r3 = cpsr * * Returns: * r0 = address of abort * r1 != 0 if writing * r3 = FSR * r4 = corrupted */ .align 5ENTRY(cpu_xscale_data_abort) mrc p15, 0, r3, c5, c0, 0 @ get FSR mrc p15, 0, r0, c6, c0, 0 @ get FAR ldr r1, [r2] @ read aborted instruction and r3, r3, #255 tst r1, r1, lsr #21 @ C = bit 20 sbc r1, r1, r1 @ r1 = C - 1 mov pc, lr/* * cpu_xscale_check_bugs() */ENTRY(cpu_xscale_check_bugs) mrs ip, cpsr bic ip, ip, #F_BIT msr cpsr, ip mov pc, lr#ifndef CONFIG_XSCALE_CACHE_ERRATA/* * cpu_xscale_proc_init() * * Nothing too exciting at the moment */ENTRY(cpu_xscale_proc_init) mov pc, lr#else/* * We enable the cache here, but we make sure all the status bits for dirty * lines are cleared as well (see PXA250 erratum #120). */ENTRY(cpu_xscale_proc_init) @ enable data cache ldr r0, cr_p ldmia r0, {r1, r2} orr r1, r1, #0x4 orr r2, r2, #0x4 stmia r0, {r1, r2} mcr p15, 0, r1, c1, c0, 0 cpwait r0 @ invalidate data cache mcr p15, 0, r0, c7, c6, 0 @ fill main cache with write-through lines bic r0, pc, #0x1f add r1, r0, #CACHESIZE1: ldr r2, [r0], #32 cmp r0, r1 bne 1b @ enable test feature to force all fills to the mini-cache mov r1, #0x8 mcr p15, 0, r1, c15, c15, 3 @ fill mini-cache with write-through lines (2kbytes, 64 lines) add r1, r0, #20482: ldr r2, [r0], #32 cmp r0, r1 bne 2b @ disable test feature to force all fills to the mini-cache mov r1, #0x0 mcr p15, 0, r1, c15, c15, 3 @ invalidate data cache again mcr p15, 0, r1, c7, c6, 0 mov pc, lrcr_p: .long SYMBOL_NAME(cr_alignment)#endif/* * cpu_xscale_proc_fin() */ENTRY(cpu_xscale_proc_fin) str lr, [sp, #-4]! mov r0, #F_BIT|I_BIT|SVC_MODE msr cpsr_c, r0 mrc p15, 0, r0, c1, c0, 0 @ ctrl register bic r0, r0, #0x1800 @ ...IZ........... bic r0, r0, #0x0006 @ .............CA. mcr p15, 0, r0, c1, c0, 0 @ disable caches bl cpu_xscale_cache_clean_invalidate_all @ clean caches ldr pc, [sp], #4/* * cpu_xscale_reset(loc) * * Perform a soft reset of the system. Put the CPU into the * same state as it would be if it had been reset, and branch * to what would be the reset vector. * * loc: location to jump to for soft reset */ .align 5ENTRY(cpu_xscale_reset) mov r1, #F_BIT|I_BIT|SVC_MODE msr cpsr_c, r1 @ reset CPSR mrc p15, 0, r1, c1, c0, 0 @ ctrl register bic r1, r1, #0x0086 @ ........B....CA. bic r1, r1, #0x1900 @ ...IZ..S........ mcr p15, 0, r1, c1, c0, 0 @ ctrl register mcr p15, 0, ip, c7, c7, 0 @ invalidate I,D caches & BTB bic r1, r1, #0x0001 @ ...............M mcr p15, 0, r1, c1, c0, 0 @ ctrl register @ CAUTION: MMU turned off from this point. We count on the pipeline @ already containing those two last instructions to survive. mcr p15, 0, ip, c8, c7, 0 @ invalidate I & D TLBs mov pc, r0/* * cpu_xscale_do_idle(type) * * Cause the processor to idle * * type: * 0 = slow idle * 1 = fast idle * 2 = switch to slow processor clock * 3 = switch to fast processor clock * * For now we do nothing but go to idle mode for every case * * XScale supports clock switching, but using idle mode support * allows external hardware to react to system state changes. */ .align 5ENTRY(cpu_xscale_do_idle) mov r0, #1 mcr p14, 0, r0, c7, c0, 0 @ Go to IDLE mov pc, lr/* ================================= CACHE ================================ *//* * cpu_xscale_cache_clean_invalidate_all (void) * * clean and invalidate all cache lines * * Note: * 1. We should preserve r0 at all times. * 2. Even if this function implies cache "invalidation" by its name, * we don't need to actually use explicit invalidation operations * since the goal is to discard all valid references from the cache * and the cleaning of it already has that effect. * 3. Because of 2 above and the fact that kernel space memory is always * coherent across task switches there is no need to worry about * inconsistencies due to interrupts, ence no irq disabling. */ .align 5ENTRY(cpu_xscale_cache_clean_invalidate_all) mov r2, #1cpu_xscale_cache_clean_invalidate_all_r2: clean_d_cache r0, r1 teq r2, #0 mcrne p15, 0, ip, c7, c5, 0 @ Invalidate I cache & BTB mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mov pc, lr/* * cpu_xscale_cache_clean_invalidate_range(start, end, flags) * * clean and invalidate all cache lines associated with this area of memory * * start: Area start address * end: Area end address * flags: nonzero for I cache as well */ .align 5ENTRY(cpu_xscale_cache_clean_invalidate_range) bic r0, r0, #CACHELINESIZE - 1 @ round down to cache line sub r3, r1, r0 cmp r3, #MAX_AREA_SIZE bhi cpu_xscale_cache_clean_invalidate_all_r21: clean_d_line r0 @ Clean D cache line mcr p15, 0, r0, c7, c6, 1 @ Invalidate D cache line add r0, r0, #CACHELINESIZE cmp r0, r1 blo 1b teq r2, #0 mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer moveq pc, lr sub r0, r0, r31: mcr p15, 0, r0, c7, c5, 1 @ Invalidate I cache line add r0, r0, #CACHELINESIZE cmp r0, r1 blo 1b mcr p15, 0, ip, c7, c5, 6 @ Invalidate BTB mov pc, lr/* * cpu_xscale_flush_ram_page(page) * * clean all cache lines associated with this memory page * * page: page to clean */ .align 5ENTRY(cpu_xscale_flush_ram_page)#if !CACHE_WRITE_THROUGH mov r1, #PAGESIZE1: mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line add r0, r0, #CACHELINESIZE mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line add r0, r0, #CACHELINESIZE subs r1, r1, #2 * CACHELINESIZE bne 1b#endif mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mov pc, lr/* ================================ D-CACHE =============================== *//* * cpu_xscale_dcache_invalidate_range(start, end) * * throw away all D-cached data in specified region without an obligation * to write them back. Note however that on XScale we must clean all * entries also due to hardware errata (80200 A0 & A1 only). * * start: virtual start address * end: virtual end address */ .align 5ENTRY(cpu_xscale_dcache_invalidate_range) mrc p15, 0, r2, c0, c0, 0 @ Read part no. eor r2, r2, #0x69000000 eor r2, r2, #0x00052000 @ 80200 XX part no. bics r2, r2, #0x1 @ Clear LSB in revision field moveq r2, #0 beq cpu_xscale_cache_clean_invalidate_range @ An 80200 A0 or A1 tst r0, #CACHELINESIZE - 1 mcrne p15, 0, r0, c7, c10, 1 @ Clean D cache line tst r1, #CACHELINESIZE - 1 mcrne p15, 0, r1, c7, c10, 1 @ Clean D cache line bic r0, r0, #CACHELINESIZE - 1 @ round down to cache line1: mcr p15, 0, r0, c7, c6, 1 @ Invalidate D cache line add r0, r0, #CACHELINESIZE cmp r0, r1 blo 1b mov pc, lr/* * cpu_xscale_dcache_clean_range(start, end) * * For the specified virtual address range, ensure that all caches contain * clean data, such that peripheral accesses to the physical RAM fetch * correct data. * * start: virtual start address * end: virtual end address */ .align 5ENTRY(cpu_xscale_dcache_clean_range)#if !CACHE_WRITE_THROUGH bic r0, r0, #CACHELINESIZE - 1 sub r2, r1, r0 cmp r2, #MAX_AREA_SIZE movhi r2, #0 bhi cpu_xscale_cache_clean_invalidate_all_r21: mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line add r0, r0, #CACHELINESIZE mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line add r0, r0, #CACHELINESIZE cmp r0, r1 blo 1b#endif mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mov pc, lr/* * cpu_xscale_clean_dcache_page(page) * * Cleans a single page of dcache so that if we have any future aliased * mappings, they will be consistent at the time that they are created. * * Note: * 1. we don't need to flush the write buffer in this case. [really? -Nico] * 2. we don't invalidate the entries since when we write the page * out to disk, the entries may get reloaded into the cache. */ .align 5ENTRY(cpu_xscale_dcache_clean_page)#if !CACHE_WRITE_THROUGH mov r1, #PAGESIZE1: mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line add r0, r0, #CACHELINESIZE mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line add r0, r0, #CACHELINESIZE mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line add r0, r0, #CACHELINESIZE mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line add r0, r0, #CACHELINESIZE subs r1, r1, #4 * CACHELINESIZE bne 1b#endif mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mov pc, lr/* * cpu_xscale_dcache_clean_entry(addr) * * Clean the specified entry of any caches such that the MMU * translation fetches will obtain correct data. * * addr: cache-unaligned virtual address */ .align 5ENTRY(cpu_xscale_dcache_clean_entry) mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer mov pc, lr/* ================================ I-CACHE =============================== *//* * cpu_xscale_icache_invalidate_range(start, end) * * invalidate a range of virtual addresses from the Icache * * start: virtual start address * end: virtual end address * * Note: This is vaguely defined as supposed to bring the dcache and the * icache in sync by the way this function is used. */ .align 5ENTRY(cpu_xscale_icache_invalidate_range) bic r0, r0, #CACHELINESIZE - 11: clean_d_line r0 @ Clean D cache line mcr p15, 0, r0, c7, c5, 1 @ Invalidate I cache line add r0, r0, #CACHELINESIZE cmp r0, r1 blo 1b mcr p15, 0, ip, c7, c5, 6 @ Invalidate BTB mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -