📄 psk_gui.asv
字号:
function varargout = PSK_GUI(varargin)
% PSK_GUI M-file for PSK_GUI.fig
% PSK_GUI, by itself, creates a new PSK_GUI or raises the existing
% singleton*.
%
% H = PSK_GUI returns the handle to a new PSK_GUI or the handle to
% the existing singleton*.
%
% PSK_GUI('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in PSK_GUI.M with the given input arguments.
%
% PSK_GUI('Property','Value',...) creates a new PSK_GUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before PSK_GUI_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to PSK_GUI_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help PSK_GUI
% Last Modified by GUIDE v2.5 25-Jun-2008 14:03:58
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @PSK_GUI_OpeningFcn, ...
'gui_OutputFcn', @PSK_GUI_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin & isstr(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before PSK_GUI is made visible.
function PSK_GUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to PSK_GUI (see VARARGIN)
% Choose default command line output for PSK_GUI
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes PSK_GUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = PSK_GUI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in pushbutton1.function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
fp=get(handles.edit2,'string');
dB_min=str2num(fp);
fp=get(handles.edit3,'string');
dB_max=str2num(fp);
fp=get(handles.edit4,'string');
dB_aml1=str2num(fp);
fp=get(handles.edit5,'string');
dB_aml2=str2num(fp);
snr_in_dB=dB_min:2.00:dB_max;
snr_in_dB2=dB_min:0.1:dB_max;
M=16;
for i=1:length(snr_in_dB)
[erro_bit_pro(i),erro_pro(i)]=m_psk2(handles,snr_in_dB(i),M);
end
for i=1:length(snr_in_dB2)
snr=10^(snr_in_dB2(i)/10);
erro_theo(i)=erfc(sqrt(snr)*sin(pi/M));%理论误码率
end
nn=2; %拟合阶数
erro_bit_cc=polyfit(snr_in_dB,erro_bit_pro,nn);
erro_bit_c=polyval(erro_bit_cc,snr_in_dB2); %误信率拟合
erro_cc=polyfit(snr_in_dB,erro_pro,nn);
erro_c=polyval(erro_cc,snr_in_dB2); %误码率拟合
txt(1,:)=['实验误码率 ',num2str(erro_pro)];
axes(handles.axes1)
semilogy(snr_in_dB,erro_pro,'*');
hold
semilogy(snr_in_dB,erro_bit_pro,'o');
semilogy(snr_in_dB2,erro_theo);
plot(snr_in_dB2,erro_c,'r-')
plot(snr_in_dB2,erro_bit_c,'y-')
axis([dB_min,dB_max,dB_aml2,dB_aml1])
xlabel('信噪比S/N');
ylabel('误码率')
legend('误码率','误信率','理论误码率','误码率拟合曲线','误信率拟合曲线',3)
title('16-PSK仿真(matlab函数)与理论误码率比较')
%%%
snr_in_dB=dB_min:2:dB_max;
snr_in=dB_min:0.1:dB_max;
for i=1:length(snr_in_dB)
[bt,bs]=psk_m(snr_in_dB(i));
erro_bit(i)=bt;
erro_prd(i)=bs;
end
for i=1:length(snr_in)
SNR=10^(snr_in(i)/10);%信噪比转换
%thro_snr(i)=exp(-SNR*(sin(pi/M)*sin(pi/M)));%理论信噪比
thro_snr(i)=erfc(sqrt(SNR)*sin(pi/M));%理论误码率
end
nn=2; %拟合阶数
erro_bit_cc=polyfit(snr_in_dB,erro_bit,nn);
erro_bit_c=polyval(erro_bit_cc,snr_in); %误信率拟合
erro_cc=polyfit(snr_in_dB,erro_prd,nn);
erro_c=polyval(erro_cc,snr_in); %误码率拟合
axes(handles.axes2)
semilogy(snr_in_dB,erro_bit,'*');
hold
semilogy(snr_in_dB,erro_prd,'o');
semilogy(snr_in,thro_snr);
plot(snr_in,erro_bit_c,'r-')
plot(snr_in,erro_c,'y-')
xlabel('信噪比S/N');
ylabel('误码率')
legend('误码率','误信率','理论误码率','误码率拟合曲线','误信率拟合曲线',3)
title('16-PSK仿真与理论误码率比较')
axis([dB_min,dB_max,dB_aml2,dB_aml1])
txt(2,:)=['实验误码率 ',num2str(erro_bit)];
%txt(3,:)=['实验信噪比 ',num2str(double([0.00:2.00:20.00]))];
set(handles.edit1,'string',txt)
%set(handles.edit1(2),'string',txt)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [bt,bs]=psk_m(snr_in_dB)
%输入信号噪声功率比是snr_in_dB
%bt 输出仿真比特
%bs 输出仿真误码率
N=100;
snr=10^(snr_in_dB/10);%信噪比转换
sgma=4*sqrt(1/(2*snr));
%sgma=M*sqrt(1/(2*SNR));
%信号映射,采用 pi/M 系统
s0000=[0 0 0 0];
s0001=[0 0 0 1];
s0010=[0 0 1 0];
s0011=[0 0 1 1];
s0100=[0 1 0 0];
s0101=[0 1 0 1];
s0110=[0 1 1 0];
s0111=[0 1 1 1];
s1000=[1 0 0 0];
s1001=[1 0 0 1];
s1010=[1 0 1 0];
s1011=[1 0 1 1];
s1100=[1 1 0 0];
s1101=[1 1 0 1];
s1110=[1 1 1 0];
s1111=[1 1 1 1];
%产生数据源
for i=1:N
temp=rand;
if(temp<0.0625)
d_source1(i)=0;
d_source2(i)=0;
d_source3(i)=0;
d_source4(i)=0;
elseif(temp<0.125)
d_source1(i)=0;
d_source2(i)=0;
d_source3(i)=0;
d_source4(i)=1;
elseif(temp<0.1875)
d_source1(i)=0;
d_source2(i)=0;
d_source3(i)=1;
d_source4(i)=0;
elseif(temp<0.25)
d_source1(i)=0;
d_source2(i)=0;
d_source3(i)=1;
d_source4(i)=1;
elseif(temp<0.3125)
d_source1(i)=0;
d_source2(i)=1;
d_source3(i)=0;
d_source4(i)=0;
elseif(temp<0.375)
d_source1(i)=0;
d_source2(i)=1;
d_source3(i)=0;
d_source4(i)=1;
elseif(temp<0.4375)
d_source1(i)=0;
d_source2(i)=1;
d_source3(i)=1;
d_source4(i)=0;
elseif(temp<0.5)
d_source1(i)=0;
d_source2(i)=1;
d_source3(i)=1;
d_source4(i)=1;
elseif(temp<0.5625)
d_source1(i)=1;
d_source2(i)=0;
d_source3(i)=0;
d_source4(i)=0;
elseif(temp<0.625)
d_source1(i)=1;
d_source2(i)=0;
d_source3(i)=0;
d_source4(i)=1;
elseif(temp<0.6875)
d_source1(i)=1;
d_source2(i)=0;
d_source3(i)=1;
d_source4(i)=0;
elseif(temp<0.75)
d_source1(i)=1;
d_source2(i)=0;
d_source3(i)=1;
d_source4(i)=1;
elseif(temp<0.8125)
d_source1(i)=1;
d_source2(i)=1;
d_source3(i)=0;
d_source4(i)=0;
elseif(temp<0.875)
d_source1(i)=1;
d_source2(i)=1;
d_source3(i)=0;
d_source4(i)=1;
elseif(temp<0.9375)
d_source1(i)=1;
d_source2(i)=1;
d_source3(i)=1;
d_source4(i)=0;
else
d_source1(i)=1;
d_source2(i)=1;
d_source3(i)=1;
d_source4(i)=1;
end
end
num_erro=0;
num_bit=0;
%产生高斯噪声
for i=1:N
[n(1),n(2),n(3),n(4)]=gngauss(sgma);
%相干解调
if(d_source1(i)==0)&(d_source2(i)==0)&(d_source3(i)==0)&(d_source4(i)==0)
r=s0000+n;
elseif(d_source1(i)==0)&(d_source2(i)==0)&(d_source3(i)==0)&(d_source4(i)==1)
r=s0001+n;
elseif(d_source1(i)==0)&(d_source2(i)==0)&(d_source3(i)==1)&(d_source4(i)==0)
r=s0010+n;
elseif(d_source1(i)==0)&(d_source2(i)==0)&(d_source3(i)==1)&(d_source4(i)==1)
r=s0011+n;
elseif(d_source1(i)==0)&(d_source2(i)==1)&(d_source3(i)==0)&(d_source4(i)==0)
r=s0100+n;
elseif(d_source1(i)==0)&(d_source2(i)==1)&(d_source3(i)==0)&(d_source4(i)==1)
r=s0101+n;
elseif(d_source1(i)==0)&(d_source2(i)==1)&(d_source3(i)==1)&(d_source4(i)==0)
r=s0110+n;
elseif(d_source1(i)==0)&(d_source2(i)==1)&(d_source3(i)==1)&(d_source4(i)==1)
r=s0111+n;
elseif(d_source1(i)==1)&(d_source2(i)==0)&(d_source3(i)==0)&(d_source4(i)==0)
r=s1000+n;
elseif(d_source1(i)==1)&(d_source2(i)==0)&(d_source3(i)==0)&(d_source4(i)==1)
r=s1001+n;
elseif(d_source1(i)==1)&(d_source2(i)==0)&(d_source3(i)==1)&(d_source4(i)==0)
r=s1010+n;
elseif(d_source1(i)==1)&(d_source2(i)==0)&(d_source3(i)==1)&(d_source4(i)==1)
r=s1011+n;
elseif(d_source1(i)==1)&(d_source2(i)==1)&(d_source3(i)==0)&(d_source4(i)==0)
r=s1100+n;
elseif(d_source1(i)==1)&(d_source2(i)==1)&(d_source3(i)==0)&(d_source4(i)==1)
r=s1101+n;
elseif(d_source1(i)==1)&(d_source2(i)==1)&(d_source3(i)==1)&(d_source4(i)==0)
r=s1110+n;
else
r=s1111+n;
end
%判决
% ss0000=dot(r,s0000);ss0001=dot(r,s0001);ss0010=dot(r,s0010);ss0011=dot(r,s0011);ss0100=dot(r,s0100);ss0101=dot(r,s0101);
% ss0110=dot(r,s0110);ss0111=dot(r,s0111);ss1000=dot(r,s1000);ss1001=dot(r,s1001);ss1010=dot(r,s1010);ss1011=dot(r,s1011);
% ss1100=dot(r,s1100);ss1101=dot(r,s1101);ss1110=dot(r,s1110);ss1111=dot(r,s1111);
% ss_max=max([ss0000,ss0001,ss0010,ss0011,ss0100,ss0101,ss0110,ss0111,ss1000,ss1001,ss1010,ss1011,ss1100,ss1101,ss1110,ss1111]);
ss0000=sum(abs(r-s0000));ss0001=sum(abs(r-s0001));ss0010=sum(abs(r-s0010));ss0011=sum(abs(r-s0011));ss0100=sum(abs(r-s0100));ss0101=sum(abs(r-s0101));
ss0110=sum(abs(r-s0110));ss0111=sum(abs(r-s0111));ss1000=sum(abs(r-s1000));ss1001=sum(abs(r-s1001));ss1010=sum(abs(r-s1010));ss1011=sum(abs(r-s1011));
ss1100=sum(abs(r-s1100));ss1101=sum(abs(r-s1101));ss1110=sum(abs(r-s1110));ss1111=sum(abs(r-s1111));
ss_max=min([ss0000,ss0001,ss0010,ss0011,ss0100,ss0101,ss0110,ss0111,ss1000,ss1001,ss1010,ss1011,ss1100,ss1101,ss1110,ss1111]);
if ss0000==ss_max
decis=[0 0 0 0];
elseif ss0001==ss_max
decis=[0 0 0 1];
elseif ss0010==ss_max
decis=[0 0 1 0];
elseif ss0011==ss_max
decis=[0 0 1 1];
elseif ss0100==ss_max
decis=[0 1 0 0];
elseif ss0101==ss_max
decis=[0 1 0 1];
elseif ss0110==ss_max
decis=[0 1 1 0];
elseif ss0111==ss_max
decis=[0 1 1 0];
elseif ss1000==ss_max
decis=[1 0 0 0];
elseif ss1001==ss_max
decis=[1 0 0 1];
elseif ss1010==ss_max
decis=[1 0 1 0];
elseif ss1011==ss_max
decis=[1 0 1 1];
elseif ss1100==ss_max
decis=[1 1 0 0];
elseif ss1101==ss_max
decis=[1 1 0 1];
elseif ss1110==ss_max
decis=[1 1 1 0];
else
decis=[1 1 1 1];
end
%判断是否正确,若判错,num_erro加1 错误码字数加1
flag=0;
if (decis(1)~=d_source1(i))
num_erro=num_erro+1;
flag=1;
end
if (decis(2)~=d_source2(i))
num_erro=num_erro+1;
flag=1;
end
if (decis(3)~=d_source3(i))
num_erro=num_erro+1;
flag=1;
end
if (decis(4)~=d_source4(i))
num_erro=num_erro+1;
flag=1;
end
if flag==1
num_bit=num_bit+1;
end
end
%误码结果
bt=num_bit/N;
bs=num_erro/(4*N);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [out1,out2,out3,out4]=gngauss(m,sgma)
%产生均值为m,方差为sgma的高斯噪声
if nargin==0
m=0;sgma=1;
elseif nargin==1
sgma=m;m=0;
end
u=rand;%均匀分布随机变量
z=sgma*(sqrt(2*log(1/(1-u))));%瑞利分布随机变量
u=rand;
out1=m+z*cos(2*pi*u);
out2=m+z*sin(2*pi*u);
out3=m+z*cos(2*pi*u+pi);
out4=m+z*sin(2*pi*u+pi);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -