⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bn_mp_exptmod_fast.c

📁 tommath库
💻 C
字号:
#include <tommath.h>#ifdef BN_MP_EXPTMOD_FAST_C/* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org *//* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85 * * Uses a left-to-right k-ary sliding window to compute the modular exponentiation. * The value of k changes based on the size of the exponent. * * Uses Montgomery or Diminished Radix reduction [whichever appropriate] */#ifdef MP_LOW_MEM   #define TAB_SIZE 32#else   #define TAB_SIZE 256#endifintmp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode){  mp_int  M[TAB_SIZE], res;  mp_digit buf, mp;  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;  /* use a pointer to the reduction algorithm.  This allows us to use   * one of many reduction algorithms without modding the guts of   * the code with if statements everywhere.   */  int     (*redux)(mp_int*,mp_int*,mp_digit);  /* find window size */  x = mp_count_bits (X);  if (x <= 7) {    winsize = 2;  } else if (x <= 36) {    winsize = 3;  } else if (x <= 140) {    winsize = 4;  } else if (x <= 450) {    winsize = 5;  } else if (x <= 1303) {    winsize = 6;  } else if (x <= 3529) {    winsize = 7;  } else {    winsize = 8;  }#ifdef MP_LOW_MEM  if (winsize > 5) {     winsize = 5;  }#endif  /* init M array */  /* init first cell */  if ((err = mp_init(&M[1])) != MP_OKAY) {     return err;  }  /* now init the second half of the array */  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {    if ((err = mp_init(&M[x])) != MP_OKAY) {      for (y = 1<<(winsize-1); y < x; y++) {        mp_clear (&M[y]);      }      mp_clear(&M[1]);      return err;    }  }  /* determine and setup reduction code */  if (redmode == 0) {#ifdef BN_MP_MONTGOMERY_SETUP_C          /* now setup montgomery  */     if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {        goto LBL_M;     }#else     err = MP_VAL;     goto LBL_M;#endif     /* automatically pick the comba one if available (saves quite a few calls/ifs) */#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C     if (((P->used * 2 + 1) < MP_WARRAY) &&          P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {        redux = fast_mp_montgomery_reduce;     } else #endif     {#ifdef BN_MP_MONTGOMERY_REDUCE_C        /* use slower baseline Montgomery method */        redux = mp_montgomery_reduce;#else        err = MP_VAL;        goto LBL_M;#endif     }  } else if (redmode == 1) {#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)     /* setup DR reduction for moduli of the form B**k - b */     mp_dr_setup(P, &mp);     redux = mp_dr_reduce;#else     err = MP_VAL;     goto LBL_M;#endif  } else {#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)     /* setup DR reduction for moduli of the form 2**k - b */     if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {        goto LBL_M;     }     redux = mp_reduce_2k;#else     err = MP_VAL;     goto LBL_M;#endif  }  /* setup result */  if ((err = mp_init (&res)) != MP_OKAY) {    goto LBL_M;  }  /* create M table   *   *   * The first half of the table is not computed though accept for M[0] and M[1]   */  if (redmode == 0) {#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C     /* now we need R mod m */     if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {       goto LBL_RES;     }#else      err = MP_VAL;     goto LBL_RES;#endif     /* now set M[1] to G * R mod m */     if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {       goto LBL_RES;     }  } else {     mp_set(&res, 1);     if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {        goto LBL_RES;     }  }  /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */  if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {    goto LBL_RES;  }  for (x = 0; x < (winsize - 1); x++) {    if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {      goto LBL_RES;    }    if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {      goto LBL_RES;    }  }  /* create upper table */  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {      goto LBL_RES;    }    if ((err = redux (&M[x], P, mp)) != MP_OKAY) {      goto LBL_RES;    }  }  /* set initial mode and bit cnt */  mode   = 0;  bitcnt = 1;  buf    = 0;  digidx = X->used - 1;  bitcpy = 0;  bitbuf = 0;  for (;;) {    /* grab next digit as required */    if (--bitcnt == 0) {      /* if digidx == -1 we are out of digits so break */      if (digidx == -1) {        break;      }      /* read next digit and reset bitcnt */      buf    = X->dp[digidx--];      bitcnt = (int)DIGIT_BIT;    }    /* grab the next msb from the exponent */    y     = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;    buf <<= (mp_digit)1;    /* if the bit is zero and mode == 0 then we ignore it     * These represent the leading zero bits before the first 1 bit     * in the exponent.  Technically this opt is not required but it     * does lower the # of trivial squaring/reductions used     */    if (mode == 0 && y == 0) {      continue;    }    /* if the bit is zero and mode == 1 then we square */    if (mode == 1 && y == 0) {      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {        goto LBL_RES;      }      if ((err = redux (&res, P, mp)) != MP_OKAY) {        goto LBL_RES;      }      continue;    }    /* else we add it to the window */    bitbuf |= (y << (winsize - ++bitcpy));    mode    = 2;    if (bitcpy == winsize) {      /* ok window is filled so square as required and multiply  */      /* square first */      for (x = 0; x < winsize; x++) {        if ((err = mp_sqr (&res, &res)) != MP_OKAY) {          goto LBL_RES;        }        if ((err = redux (&res, P, mp)) != MP_OKAY) {          goto LBL_RES;        }      }      /* then multiply */      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {        goto LBL_RES;      }      if ((err = redux (&res, P, mp)) != MP_OKAY) {        goto LBL_RES;      }      /* empty window and reset */      bitcpy = 0;      bitbuf = 0;      mode   = 1;    }  }  /* if bits remain then square/multiply */  if (mode == 2 && bitcpy > 0) {    /* square then multiply if the bit is set */    for (x = 0; x < bitcpy; x++) {      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {        goto LBL_RES;      }      if ((err = redux (&res, P, mp)) != MP_OKAY) {        goto LBL_RES;      }      /* get next bit of the window */      bitbuf <<= 1;      if ((bitbuf & (1 << winsize)) != 0) {        /* then multiply */        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {          goto LBL_RES;        }        if ((err = redux (&res, P, mp)) != MP_OKAY) {          goto LBL_RES;        }      }    }  }  if (redmode == 0) {     /* fixup result if Montgomery reduction is used      * recall that any value in a Montgomery system is      * actually multiplied by R mod n.  So we have      * to reduce one more time to cancel out the factor      * of R.      */     if ((err = redux(&res, P, mp)) != MP_OKAY) {       goto LBL_RES;     }  }  /* swap res with Y */  mp_exch (&res, Y);  err = MP_OKAY;LBL_RES:mp_clear (&res);LBL_M:  mp_clear(&M[1]);  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {    mp_clear (&M[x]);  }  return err;}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -