⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bn_mp_karatsuba_mul.c

📁 tommath库
💻 C
字号:
#include <tommath.h>#ifdef BN_MP_KARATSUBA_MUL_C/* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org *//* c = |a| * |b| using Karatsuba Multiplication using  * three half size multiplications * * Let B represent the radix [e.g. 2**DIGIT_BIT] and  * let n represent half of the number of digits in  * the min(a,b) * * a = a1 * B**n + a0 * b = b1 * B**n + b0 * * Then, a * b =>    a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0 * * Note that a1b1 and a0b0 are used twice and only need to be  * computed once.  So in total three half size (half # of  * digit) multiplications are performed, a0b0, a1b1 and  * (a1-b1)(a0-b0) * * Note that a multiplication of half the digits requires * 1/4th the number of single precision multiplications so in  * total after one call 25% of the single precision multiplications  * are saved.  Note also that the call to mp_mul can end up back  * in this function if the a0, a1, b0, or b1 are above the threshold.   * This is known as divide-and-conquer and leads to the famous  * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than  * the standard O(N**2) that the baseline/comba methods use.   * Generally though the overhead of this method doesn't pay off  * until a certain size (N ~ 80) is reached. */int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c){  mp_int  x0, x1, y0, y1, t1, x0y0, x1y1;  int     B, err;  /* default the return code to an error */  err = MP_MEM;  /* min # of digits */  B = MIN (a->used, b->used);  /* now divide in two */  B = B >> 1;  /* init copy all the temps */  if (mp_init_size (&x0, B) != MP_OKAY)    goto ERR;  if (mp_init_size (&x1, a->used - B) != MP_OKAY)    goto X0;  if (mp_init_size (&y0, B) != MP_OKAY)    goto X1;  if (mp_init_size (&y1, b->used - B) != MP_OKAY)    goto Y0;  /* init temps */  if (mp_init_size (&t1, B * 2) != MP_OKAY)    goto Y1;  if (mp_init_size (&x0y0, B * 2) != MP_OKAY)    goto T1;  if (mp_init_size (&x1y1, B * 2) != MP_OKAY)    goto X0Y0;  /* now shift the digits */  x0.used = y0.used = B;  x1.used = a->used - B;  y1.used = b->used - B;  {    register int x;    register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;    /* we copy the digits directly instead of using higher level functions     * since we also need to shift the digits     */    tmpa = a->dp;    tmpb = b->dp;    tmpx = x0.dp;    tmpy = y0.dp;    for (x = 0; x < B; x++) {      *tmpx++ = *tmpa++;      *tmpy++ = *tmpb++;    }    tmpx = x1.dp;    for (x = B; x < a->used; x++) {      *tmpx++ = *tmpa++;    }    tmpy = y1.dp;    for (x = B; x < b->used; x++) {      *tmpy++ = *tmpb++;    }  }  /* only need to clamp the lower words since by definition the    * upper words x1/y1 must have a known number of digits   */  mp_clamp (&x0);  mp_clamp (&y0);  /* now calc the products x0y0 and x1y1 */  /* after this x0 is no longer required, free temp [x0==t2]! */  if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)      goto X1Y1;          /* x0y0 = x0*y0 */  if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)    goto X1Y1;          /* x1y1 = x1*y1 */  /* now calc x1-x0 and y1-y0 */  if (mp_sub (&x1, &x0, &t1) != MP_OKAY)    goto X1Y1;          /* t1 = x1 - x0 */  if (mp_sub (&y1, &y0, &x0) != MP_OKAY)    goto X1Y1;          /* t2 = y1 - y0 */  if (mp_mul (&t1, &x0, &t1) != MP_OKAY)    goto X1Y1;          /* t1 = (x1 - x0) * (y1 - y0) */  /* add x0y0 */  if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)    goto X1Y1;          /* t2 = x0y0 + x1y1 */  if (mp_sub (&x0, &t1, &t1) != MP_OKAY)    goto X1Y1;          /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */  /* shift by B */  if (mp_lshd (&t1, B) != MP_OKAY)    goto X1Y1;          /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */  if (mp_lshd (&x1y1, B * 2) != MP_OKAY)    goto X1Y1;          /* x1y1 = x1y1 << 2*B */  if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)    goto X1Y1;          /* t1 = x0y0 + t1 */  if (mp_add (&t1, &x1y1, c) != MP_OKAY)    goto X1Y1;          /* t1 = x0y0 + t1 + x1y1 */  /* Algorithm succeeded set the return code to MP_OKAY */  err = MP_OKAY;X1Y1:mp_clear (&x1y1);X0Y0:mp_clear (&x0y0);T1:mp_clear (&t1);Y1:mp_clear (&y1);Y0:mp_clear (&y0);X1:mp_clear (&x1);X0:mp_clear (&x0);ERR:  return err;}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -