⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bn_mp_prime_next_prime.c

📁 tommath库
💻 C
字号:
#include <tommath.h>#ifdef BN_MP_PRIME_NEXT_PRIME_C/* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org *//* finds the next prime after the number "a" using "t" trials * of Miller-Rabin. * * bbs_style = 1 means the prime must be congruent to 3 mod 4 */int mp_prime_next_prime(mp_int *a, int t, int bbs_style){   int      err, res, x, y;   mp_digit res_tab[PRIME_SIZE], step, kstep;   mp_int   b;   /* ensure t is valid */   if (t <= 0 || t > PRIME_SIZE) {      return MP_VAL;   }   /* force positive */   a->sign = MP_ZPOS;   /* simple algo if a is less than the largest prime in the table */   if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) {      /* find which prime it is bigger than */      for (x = PRIME_SIZE - 2; x >= 0; x--) {          if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) {             if (bbs_style == 1) {                /* ok we found a prime smaller or                 * equal [so the next is larger]                 *                 * however, the prime must be                 * congruent to 3 mod 4                 */                if ((ltm_prime_tab[x + 1] & 3) != 3) {                   /* scan upwards for a prime congruent to 3 mod 4 */                   for (y = x + 1; y < PRIME_SIZE; y++) {                       if ((ltm_prime_tab[y] & 3) == 3) {                          mp_set(a, ltm_prime_tab[y]);                          return MP_OKAY;                       }                   }                }             } else {                mp_set(a, ltm_prime_tab[x + 1]);                return MP_OKAY;             }          }      }      /* at this point a maybe 1 */      if (mp_cmp_d(a, 1) == MP_EQ) {         mp_set(a, 2);         return MP_OKAY;      }      /* fall through to the sieve */   }   /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */   if (bbs_style == 1) {      kstep   = 4;   } else {      kstep   = 2;   }   /* at this point we will use a combination of a sieve and Miller-Rabin */   if (bbs_style == 1) {      /* if a mod 4 != 3 subtract the correct value to make it so */      if ((a->dp[0] & 3) != 3) {         if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; };      }   } else {      if (mp_iseven(a) == 1) {         /* force odd */         if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) {            return err;         }      }   }   /* generate the restable */   for (x = 1; x < PRIME_SIZE; x++) {      if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) {         return err;      }   }   /* init temp used for Miller-Rabin Testing */   if ((err = mp_init(&b)) != MP_OKAY) {      return err;   }   for (;;) {      /* skip to the next non-trivially divisible candidate */      step = 0;      do {         /* y == 1 if any residue was zero [e.g. cannot be prime] */         y     =  0;         /* increase step to next candidate */         step += kstep;         /* compute the new residue without using division */         for (x = 1; x < PRIME_SIZE; x++) {             /* add the step to each residue */             res_tab[x] += kstep;             /* subtract the modulus [instead of using division] */             if (res_tab[x] >= ltm_prime_tab[x]) {                res_tab[x]  -= ltm_prime_tab[x];             }             /* set flag if zero */             if (res_tab[x] == 0) {                y = 1;             }         }      } while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep));      /* add the step */      if ((err = mp_add_d(a, step, a)) != MP_OKAY) {         goto LBL_ERR;      }      /* if didn't pass sieve and step == MAX then skip test */      if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) {         continue;      }      /* is this prime? */      for (x = 0; x < t; x++) {          mp_set(&b, ltm_prime_tab[t]);          if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {             goto LBL_ERR;          }          if (res == MP_NO) {             break;          }      }      if (res == MP_YES) {         break;      }   }   err = MP_OKAY;LBL_ERR:   mp_clear(&b);   return err;}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -