⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bn_s_mp_exptmod.c

📁 tommath库
💻 C
字号:
#include <tommath.h>#ifdef BN_S_MP_EXPTMOD_C/* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org */#ifdef MP_LOW_MEM   #define TAB_SIZE 32#else   #define TAB_SIZE 256#endifint s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y){  mp_int  M[TAB_SIZE], res, mu;  mp_digit buf;  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;  /* find window size */  x = mp_count_bits (X);  if (x <= 7) {    winsize = 2;  } else if (x <= 36) {    winsize = 3;  } else if (x <= 140) {    winsize = 4;  } else if (x <= 450) {    winsize = 5;  } else if (x <= 1303) {    winsize = 6;  } else if (x <= 3529) {    winsize = 7;  } else {    winsize = 8;  }#ifdef MP_LOW_MEM    if (winsize > 5) {       winsize = 5;    }#endif  /* init M array */  /* init first cell */  if ((err = mp_init(&M[1])) != MP_OKAY) {     return err;   }  /* now init the second half of the array */  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {    if ((err = mp_init(&M[x])) != MP_OKAY) {      for (y = 1<<(winsize-1); y < x; y++) {        mp_clear (&M[y]);      }      mp_clear(&M[1]);      return err;    }  }  /* create mu, used for Barrett reduction */  if ((err = mp_init (&mu)) != MP_OKAY) {    goto LBL_M;  }  if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {    goto LBL_MU;  }  /* create M table   *   * The M table contains powers of the base,    * e.g. M[x] = G**x mod P   *   * The first half of the table is not    * computed though accept for M[0] and M[1]   */  if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {    goto LBL_MU;  }  /* compute the value at M[1<<(winsize-1)] by squaring    * M[1] (winsize-1) times    */  if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {    goto LBL_MU;  }  for (x = 0; x < (winsize - 1); x++) {    if ((err = mp_sqr (&M[1 << (winsize - 1)],                        &M[1 << (winsize - 1)])) != MP_OKAY) {      goto LBL_MU;    }    if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {      goto LBL_MU;    }  }  /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)   * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)   */  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {      goto LBL_MU;    }    if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {      goto LBL_MU;    }  }  /* setup result */  if ((err = mp_init (&res)) != MP_OKAY) {    goto LBL_MU;  }  mp_set (&res, 1);  /* set initial mode and bit cnt */  mode   = 0;  bitcnt = 1;  buf    = 0;  digidx = X->used - 1;  bitcpy = 0;  bitbuf = 0;  for (;;) {    /* grab next digit as required */    if (--bitcnt == 0) {      /* if digidx == -1 we are out of digits */      if (digidx == -1) {        break;      }      /* read next digit and reset the bitcnt */      buf    = X->dp[digidx--];      bitcnt = (int) DIGIT_BIT;    }    /* grab the next msb from the exponent */    y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;    buf <<= (mp_digit)1;    /* if the bit is zero and mode == 0 then we ignore it     * These represent the leading zero bits before the first 1 bit     * in the exponent.  Technically this opt is not required but it     * does lower the # of trivial squaring/reductions used     */    if (mode == 0 && y == 0) {      continue;    }    /* if the bit is zero and mode == 1 then we square */    if (mode == 1 && y == 0) {      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {        goto LBL_RES;      }      if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {        goto LBL_RES;      }      continue;    }    /* else we add it to the window */    bitbuf |= (y << (winsize - ++bitcpy));    mode    = 2;    if (bitcpy == winsize) {      /* ok window is filled so square as required and multiply  */      /* square first */      for (x = 0; x < winsize; x++) {        if ((err = mp_sqr (&res, &res)) != MP_OKAY) {          goto LBL_RES;        }        if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {          goto LBL_RES;        }      }      /* then multiply */      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {        goto LBL_RES;      }      if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {        goto LBL_RES;      }      /* empty window and reset */      bitcpy = 0;      bitbuf = 0;      mode   = 1;    }  }  /* if bits remain then square/multiply */  if (mode == 2 && bitcpy > 0) {    /* square then multiply if the bit is set */    for (x = 0; x < bitcpy; x++) {      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {        goto LBL_RES;      }      if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {        goto LBL_RES;      }      bitbuf <<= 1;      if ((bitbuf & (1 << winsize)) != 0) {        /* then multiply */        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {          goto LBL_RES;        }        if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {          goto LBL_RES;        }      }    }  }  mp_exch (&res, Y);  err = MP_OKAY;LBL_RES:mp_clear (&res);LBL_MU:mp_clear (&mu);LBL_M:  mp_clear(&M[1]);  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {    mp_clear (&M[x]);  }  return err;}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -