⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bn_mp_invmod_slow.c

📁 tommath库
💻 C
字号:
#include <tommath.h>#ifdef BN_MP_INVMOD_SLOW_C/* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org *//* hac 14.61, pp608 */int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c){  mp_int  x, y, u, v, A, B, C, D;  int     res;  /* b cannot be negative */  if (b->sign == MP_NEG || mp_iszero(b) == 1) {    return MP_VAL;  }  /* init temps */  if ((res = mp_init_multi(&x, &y, &u, &v,                            &A, &B, &C, &D, NULL)) != MP_OKAY) {     return res;  }  /* x = a, y = b */  if ((res = mp_copy (a, &x)) != MP_OKAY) {    goto LBL_ERR;  }  if ((res = mp_copy (b, &y)) != MP_OKAY) {    goto LBL_ERR;  }  /* 2. [modified] if x,y are both even then return an error! */  if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {    res = MP_VAL;    goto LBL_ERR;  }  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */  if ((res = mp_copy (&x, &u)) != MP_OKAY) {    goto LBL_ERR;  }  if ((res = mp_copy (&y, &v)) != MP_OKAY) {    goto LBL_ERR;  }  mp_set (&A, 1);  mp_set (&D, 1);top:  /* 4.  while u is even do */  while (mp_iseven (&u) == 1) {    /* 4.1 u = u/2 */    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {      goto LBL_ERR;    }    /* 4.2 if A or B is odd then */    if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {      /* A = (A+y)/2, B = (B-x)/2 */      if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {         goto LBL_ERR;      }      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {         goto LBL_ERR;      }    }    /* A = A/2, B = B/2 */    if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {      goto LBL_ERR;    }    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {      goto LBL_ERR;    }  }  /* 5.  while v is even do */  while (mp_iseven (&v) == 1) {    /* 5.1 v = v/2 */    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {      goto LBL_ERR;    }    /* 5.2 if C or D is odd then */    if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {      /* C = (C+y)/2, D = (D-x)/2 */      if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {         goto LBL_ERR;      }      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {         goto LBL_ERR;      }    }    /* C = C/2, D = D/2 */    if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {      goto LBL_ERR;    }    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {      goto LBL_ERR;    }  }  /* 6.  if u >= v then */  if (mp_cmp (&u, &v) != MP_LT) {    /* u = u - v, A = A - C, B = B - D */    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {      goto LBL_ERR;    }    if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {      goto LBL_ERR;    }    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {      goto LBL_ERR;    }  } else {    /* v - v - u, C = C - A, D = D - B */    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {      goto LBL_ERR;    }    if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {      goto LBL_ERR;    }    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {      goto LBL_ERR;    }  }  /* if not zero goto step 4 */  if (mp_iszero (&u) == 0)    goto top;  /* now a = C, b = D, gcd == g*v */  /* if v != 1 then there is no inverse */  if (mp_cmp_d (&v, 1) != MP_EQ) {    res = MP_VAL;    goto LBL_ERR;  }  /* if its too low */  while (mp_cmp_d(&C, 0) == MP_LT) {      if ((res = mp_add(&C, b, &C)) != MP_OKAY) {         goto LBL_ERR;      }  }    /* too big */  while (mp_cmp_mag(&C, b) != MP_LT) {      if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {         goto LBL_ERR;      }  }    /* C is now the inverse */  mp_exch (&C, c);  res = MP_OKAY;LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);  return res;}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -