⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bn_mp_div.c

📁 tommath库
💻 C
字号:
#include <tommath.h>#ifdef BN_MP_DIV_C/* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org */#ifdef BN_MP_DIV_SMALL/* slower bit-bang division... also smaller */int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d){   mp_int ta, tb, tq, q;   int    res, n, n2;  /* is divisor zero ? */  if (mp_iszero (b) == 1) {    return MP_VAL;  }  /* if a < b then q=0, r = a */  if (mp_cmp_mag (a, b) == MP_LT) {    if (d != NULL) {      res = mp_copy (a, d);    } else {      res = MP_OKAY;    }    if (c != NULL) {      mp_zero (c);    }    return res;  }	  /* init our temps */  if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {     return res;  }  mp_set(&tq, 1);  n = mp_count_bits(a) - mp_count_bits(b);  if (((res = mp_abs(a, &ta)) != MP_OKAY) ||      ((res = mp_abs(b, &tb)) != MP_OKAY) ||       ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||      ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {      goto LBL_ERR;  }  while (n-- >= 0) {     if (mp_cmp(&tb, &ta) != MP_GT) {        if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||            ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {           goto LBL_ERR;        }     }     if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||         ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {           goto LBL_ERR;     }  }  /* now q == quotient and ta == remainder */  n  = a->sign;  n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);  if (c != NULL) {     mp_exch(c, &q);     c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;  }  if (d != NULL) {     mp_exch(d, &ta);     d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;  }LBL_ERR:   mp_clear_multi(&ta, &tb, &tq, &q, NULL);   return res;}#else/* integer signed division.  * c*b + d == a [e.g. a/b, c=quotient, d=remainder] * HAC pp.598 Algorithm 14.20 * * Note that the description in HAC is horribly  * incomplete.  For example, it doesn't consider  * the case where digits are removed from 'x' in  * the inner loop.  It also doesn't consider the  * case that y has fewer than three digits, etc.. * * The overall algorithm is as described as  * 14.20 from HAC but fixed to treat these cases.*/int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d){  mp_int  q, x, y, t1, t2;  int     res, n, t, i, norm, neg;  /* is divisor zero ? */  if (mp_iszero (b) == 1) {    return MP_VAL;  }  /* if a < b then q=0, r = a */  if (mp_cmp_mag (a, b) == MP_LT) {    if (d != NULL) {      res = mp_copy (a, d);    } else {      res = MP_OKAY;    }    if (c != NULL) {      mp_zero (c);    }    return res;  }  if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {    return res;  }  q.used = a->used + 2;  if ((res = mp_init (&t1)) != MP_OKAY) {    goto LBL_Q;  }  if ((res = mp_init (&t2)) != MP_OKAY) {    goto LBL_T1;  }  if ((res = mp_init_copy (&x, a)) != MP_OKAY) {    goto LBL_T2;  }  if ((res = mp_init_copy (&y, b)) != MP_OKAY) {    goto LBL_X;  }  /* fix the sign */  neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;  x.sign = y.sign = MP_ZPOS;  /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */  norm = mp_count_bits(&y) % DIGIT_BIT;  if (norm < (int)(DIGIT_BIT-1)) {     norm = (DIGIT_BIT-1) - norm;     if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {       goto LBL_Y;     }     if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {       goto LBL_Y;     }  } else {     norm = 0;  }  /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */  n = x.used - 1;  t = y.used - 1;  /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */  if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */    goto LBL_Y;  }  while (mp_cmp (&x, &y) != MP_LT) {    ++(q.dp[n - t]);    if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {      goto LBL_Y;    }  }  /* reset y by shifting it back down */  mp_rshd (&y, n - t);  /* step 3. for i from n down to (t + 1) */  for (i = n; i >= (t + 1); i--) {    if (i > x.used) {      continue;    }    /* step 3.1 if xi == yt then set q{i-t-1} to b-1,      * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */    if (x.dp[i] == y.dp[t]) {      q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);    } else {      mp_word tmp;      tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);      tmp |= ((mp_word) x.dp[i - 1]);      tmp /= ((mp_word) y.dp[t]);      if (tmp > (mp_word) MP_MASK)        tmp = MP_MASK;      q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));    }    /* while (q{i-t-1} * (yt * b + y{t-1})) >              xi * b**2 + xi-1 * b + xi-2             do q{i-t-1} -= 1;     */    q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;    do {      q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;      /* find left hand */      mp_zero (&t1);      t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];      t1.dp[1] = y.dp[t];      t1.used = 2;      if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {        goto LBL_Y;      }      /* find right hand */      t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];      t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];      t2.dp[2] = x.dp[i];      t2.used = 3;    } while (mp_cmp_mag(&t1, &t2) == MP_GT);    /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */    if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {      goto LBL_Y;    }    if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {      goto LBL_Y;    }    if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {      goto LBL_Y;    }    /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */    if (x.sign == MP_NEG) {      if ((res = mp_copy (&y, &t1)) != MP_OKAY) {        goto LBL_Y;      }      if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {        goto LBL_Y;      }      if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {        goto LBL_Y;      }      q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;    }  }  /* now q is the quotient and x is the remainder    * [which we have to normalize]    */    /* get sign before writing to c */  x.sign = x.used == 0 ? MP_ZPOS : a->sign;  if (c != NULL) {    mp_clamp (&q);    mp_exch (&q, c);    c->sign = neg;  }  if (d != NULL) {    mp_div_2d (&x, norm, &x, NULL);    mp_exch (&x, d);  }  res = MP_OKAY;LBL_Y:mp_clear (&y);LBL_X:mp_clear (&x);LBL_T2:mp_clear (&t2);LBL_T1:mp_clear (&t1);LBL_Q:mp_clear (&q);  return res;}#endif#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -