⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bn_fast_mp_invmod.c

📁 tommath库
💻 C
字号:
#include <tommath.h>#ifdef BN_FAST_MP_INVMOD_C/* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org *//* computes the modular inverse via binary extended euclidean algorithm,  * that is c = 1/a mod b  * * Based on slow invmod except this is optimized for the case where b is  * odd as per HAC Note 14.64 on pp. 610 */intfast_mp_invmod (mp_int * a, mp_int * b, mp_int * c){  mp_int  x, y, u, v, B, D;  int     res, neg;  /* 2. [modified] b must be odd   */  if (mp_iseven (b) == 1) {    return MP_VAL;  }  /* init all our temps */  if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {     return res;  }  /* x == modulus, y == value to invert */  if ((res = mp_copy (b, &x)) != MP_OKAY) {    goto LBL_ERR;  }  /* we need y = |a| */  if ((res = mp_abs (a, &y)) != MP_OKAY) {    goto LBL_ERR;  }  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */  if ((res = mp_copy (&x, &u)) != MP_OKAY) {    goto LBL_ERR;  }  if ((res = mp_copy (&y, &v)) != MP_OKAY) {    goto LBL_ERR;  }  mp_set (&D, 1);top:  /* 4.  while u is even do */  while (mp_iseven (&u) == 1) {    /* 4.1 u = u/2 */    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {      goto LBL_ERR;    }    /* 4.2 if B is odd then */    if (mp_isodd (&B) == 1) {      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {        goto LBL_ERR;      }    }    /* B = B/2 */    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {      goto LBL_ERR;    }  }  /* 5.  while v is even do */  while (mp_iseven (&v) == 1) {    /* 5.1 v = v/2 */    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {      goto LBL_ERR;    }    /* 5.2 if D is odd then */    if (mp_isodd (&D) == 1) {      /* D = (D-x)/2 */      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {        goto LBL_ERR;      }    }    /* D = D/2 */    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {      goto LBL_ERR;    }  }  /* 6.  if u >= v then */  if (mp_cmp (&u, &v) != MP_LT) {    /* u = u - v, B = B - D */    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {      goto LBL_ERR;    }    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {      goto LBL_ERR;    }  } else {    /* v - v - u, D = D - B */    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {      goto LBL_ERR;    }    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {      goto LBL_ERR;    }  }  /* if not zero goto step 4 */  if (mp_iszero (&u) == 0) {    goto top;  }  /* now a = C, b = D, gcd == g*v */  /* if v != 1 then there is no inverse */  if (mp_cmp_d (&v, 1) != MP_EQ) {    res = MP_VAL;    goto LBL_ERR;  }  /* b is now the inverse */  neg = a->sign;  while (D.sign == MP_NEG) {    if ((res = mp_add (&D, b, &D)) != MP_OKAY) {      goto LBL_ERR;    }  }  mp_exch (&D, c);  c->sign = neg;  res = MP_OKAY;LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);  return res;}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -