⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bn_mp_exptmod.c

📁 tommath库
💻 C
字号:
#include <tommath.h>#ifdef BN_MP_EXPTMOD_C/* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org *//* this is a shell function that calls either the normal or Montgomery * exptmod functions.  Originally the call to the montgomery code was * embedded in the normal function but that wasted alot of stack space * for nothing (since 99% of the time the Montgomery code would be called) */int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y){  int dr;  /* modulus P must be positive */  if (P->sign == MP_NEG) {     return MP_VAL;  }  /* if exponent X is negative we have to recurse */  if (X->sign == MP_NEG) {#ifdef BN_MP_INVMOD_C     mp_int tmpG, tmpX;     int err;     /* first compute 1/G mod P */     if ((err = mp_init(&tmpG)) != MP_OKAY) {        return err;     }     if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {        mp_clear(&tmpG);        return err;     }     /* now get |X| */     if ((err = mp_init(&tmpX)) != MP_OKAY) {        mp_clear(&tmpG);        return err;     }     if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {        mp_clear_multi(&tmpG, &tmpX, NULL);        return err;     }     /* and now compute (1/G)**|X| instead of G**X [X < 0] */     err = mp_exptmod(&tmpG, &tmpX, P, Y);     mp_clear_multi(&tmpG, &tmpX, NULL);     return err;#else      /* no invmod */     return MP_VAL;#endif  }#ifdef BN_MP_DR_IS_MODULUS_C  /* is it a DR modulus? */  dr = mp_dr_is_modulus(P);#else  dr = 0;#endif#ifdef BN_MP_REDUCE_IS_2K_C  /* if not, is it a uDR modulus? */  if (dr == 0) {     dr = mp_reduce_is_2k(P) << 1;  }#endif      /* if the modulus is odd or dr != 0 use the fast method */#ifdef BN_MP_EXPTMOD_FAST_C  if (mp_isodd (P) == 1 || dr !=  0) {    return mp_exptmod_fast (G, X, P, Y, dr);  } else {#endif#ifdef BN_S_MP_EXPTMOD_C    /* otherwise use the generic Barrett reduction technique */    return s_mp_exptmod (G, X, P, Y);#else    /* no exptmod for evens */    return MP_VAL;#endif#ifdef BN_MP_EXPTMOD_FAST_C  }#endif}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -