📄 cxsvd.cpp
字号:
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "_cxcore.h"
#include <float.h>
/////////////////////////////////////////////////////////////////////////////////////////
#define icvGivens_64f( n, x, y, c, s ) \
{ \
int _i; \
double* _x = (x); \
double* _y = (y); \
\
for( _i = 0; _i < n; _i++ ) \
{ \
double t0 = _x[_i]; \
double t1 = _y[_i]; \
_x[_i] = t0*c + t1*s; \
_y[_i] = -t0*s + t1*c; \
} \
}
/* y[0:m,0:n] += diag(a[0:1,0:m]) * x[0:m,0:n] */
static void
icvMatrAXPY_64f( int m, int n, const double* x, int dx,
const double* a, double* y, int dy )
{
int i, j;
for( i = 0; i < m; i++, x += dx, y += dy )
{
double s = a[i];
for( j = 0; j <= n - 4; j += 4 )
{
double t0 = y[j] + s*x[j];
double t1 = y[j+1] + s*x[j+1];
y[j] = t0;
y[j+1] = t1;
t0 = y[j+2] + s*x[j+2];
t1 = y[j+3] + s*x[j+3];
y[j+2] = t0;
y[j+3] = t1;
}
for( ; j < n; j++ ) y[j] += s*x[j];
}
}
/* y[1:m,-1] = h*y[1:m,0:n]*x[0:1,0:n]'*x[-1] (this is used for U&V reconstruction)
y[1:m,0:n] += h*y[1:m,0:n]*x[0:1,0:n]'*x[0:1,0:n] */
static void
icvMatrAXPY3_64f( int m, int n, const double* x, int l, double* y, double h )
{
int i, j;
for( i = 1; i < m; i++ )
{
double s = 0;
y += l;
for( j = 0; j <= n - 4; j += 4 )
s += x[j]*y[j] + x[j+1]*y[j+1] + x[j+2]*y[j+2] + x[j+3]*y[j+3];
for( ; j < n; j++ ) s += x[j]*y[j];
s *= h;
y[-1] = s*x[-1];
for( j = 0; j <= n - 4; j += 4 )
{
double t0 = y[j] + s*x[j];
double t1 = y[j+1] + s*x[j+1];
y[j] = t0;
y[j+1] = t1;
t0 = y[j+2] + s*x[j+2];
t1 = y[j+3] + s*x[j+3];
y[j+2] = t0;
y[j+3] = t1;
}
for( ; j < n; j++ ) y[j] += s*x[j];
}
}
#define icvGivens_32f( n, x, y, c, s ) \
{ \
int _i; \
float* _x = (x); \
float* _y = (y); \
\
for( _i = 0; _i < n; _i++ ) \
{ \
double t0 = _x[_i]; \
double t1 = _y[_i]; \
_x[_i] = (float)(t0*c + t1*s); \
_y[_i] = (float)(-t0*s + t1*c);\
} \
}
static void
icvMatrAXPY_32f( int m, int n, const float* x, int dx,
const float* a, float* y, int dy )
{
int i, j;
for( i = 0; i < m; i++, x += dx, y += dy )
{
double s = a[i];
for( j = 0; j <= n - 4; j += 4 )
{
double t0 = y[j] + s*x[j];
double t1 = y[j+1] + s*x[j+1];
y[j] = (float)t0;
y[j+1] = (float)t1;
t0 = y[j+2] + s*x[j+2];
t1 = y[j+3] + s*x[j+3];
y[j+2] = (float)t0;
y[j+3] = (float)t1;
}
for( ; j < n; j++ )
y[j] = (float)(y[j] + s*x[j]);
}
}
static void
icvMatrAXPY3_32f( int m, int n, const float* x, int l, float* y, double h )
{
int i, j;
for( i = 1; i < m; i++ )
{
double s = 0;
y += l;
for( j = 0; j <= n - 4; j += 4 )
s += x[j]*y[j] + x[j+1]*y[j+1] + x[j+2]*y[j+2] + x[j+3]*y[j+3];
for( ; j < n; j++ ) s += x[j]*y[j];
s *= h;
y[-1] = (float)(s*x[-1]);
for( j = 0; j <= n - 4; j += 4 )
{
double t0 = y[j] + s*x[j];
double t1 = y[j+1] + s*x[j+1];
y[j] = (float)t0;
y[j+1] = (float)t1;
t0 = y[j+2] + s*x[j+2];
t1 = y[j+3] + s*x[j+3];
y[j+2] = (float)t0;
y[j+3] = (float)t1;
}
for( ; j < n; j++ ) y[j] = (float)(y[j] + s*x[j]);
}
}
/* accurate hypotenuse calculation */
static double
pythag( double a, double b )
{
a = fabs( a );
b = fabs( b );
if( a > b )
{
b /= a;
a *= sqrt( 1. + b * b );
}
else if( b != 0 )
{
a /= b;
a = b * sqrt( 1. + a * a );
}
return a;
}
/****************************************************************************************/
/****************************************************************************************/
#define MAX_ITERS 30
static void
icvSVD_64f( double* a, int lda, int m, int n,
double* w,
double* uT, int lduT, int nu,
double* vT, int ldvT,
double* buffer )
{
double* e;
double* temp;
double *w1, *e1;
double *hv;
double ku0 = 0, kv0 = 0;
double anorm = 0;
double *a1, *u0 = uT, *v0 = vT;
double scale, h;
int i, j, k, l;
int nm, m1, n1;
int nv = n;
int iters = 0;
double* hv0 = (double*)cvStackAlloc( (m+2)*sizeof(hv0[0])) + 1;
e = buffer;
w1 = w;
e1 = e + 1;
nm = n;
temp = buffer + nm;
memset( w, 0, nm * sizeof( w[0] ));
memset( e, 0, nm * sizeof( e[0] ));
m1 = m;
n1 = n;
/* transform a to bi-diagonal form */
for( ;; )
{
int update_u;
int update_v;
if( m1 == 0 )
break;
scale = h = 0;
update_u = uT && m1 > m - nu;
hv = update_u ? uT : hv0;
for( j = 0, a1 = a; j < m1; j++, a1 += lda )
{
double t = a1[0];
scale += fabs( hv[j] = t );
}
if( scale != 0 )
{
double f = 1./scale, g, s = 0;
for( j = 0; j < m1; j++ )
{
double t = (hv[j] *= f);
s += t * t;
}
g = sqrt( s );
f = hv[0];
if( f >= 0 )
g = -g;
hv[0] = f - g;
h = 1. / (f * g - s);
memset( temp, 0, n1 * sizeof( temp[0] ));
/* calc temp[0:n-i] = a[i:m,i:n]'*hv[0:m-i] */
icvMatrAXPY_64f( m1, n1 - 1, a + 1, lda, hv, temp + 1, 0 );
for( k = 1; k < n1; k++ ) temp[k] *= h;
/* modify a: a[i:m,i:n] = a[i:m,i:n] + hv[0:m-i]*temp[0:n-i]' */
icvMatrAXPY_64f( m1, n1 - 1, temp + 1, 0, hv, a + 1, lda );
*w1 = g*scale;
}
w1++;
/* store -2/(hv'*hv) */
if( update_u )
{
if( m1 == m )
ku0 = h;
else
hv[-1] = h;
}
a++;
n1--;
if( vT )
vT += ldvT + 1;
if( n1 == 0 )
break;
scale = h = 0;
update_v = vT && n1 > n - nv;
hv = update_v ? vT : hv0;
for( j = 0; j < n1; j++ )
{
double t = a[j];
scale += fabs( hv[j] = t );
}
if( scale != 0 )
{
double f = 1./scale, g, s = 0;
for( j = 0; j < n1; j++ )
{
double t = (hv[j] *= f);
s += t * t;
}
g = sqrt( s );
f = hv[0];
if( f >= 0 )
g = -g;
hv[0] = f - g;
h = 1. / (f * g - s);
hv[-1] = 0.;
/* update a[i:m:i+1:n] = a[i:m,i+1:n] + (a[i:m,i+1:n]*hv[0:m-i])*... */
icvMatrAXPY3_64f( m1, n1, hv, lda, a, h );
*e1 = g*scale;
}
e1++;
/* store -2/(hv'*hv) */
if( update_v )
{
if( n1 == n )
kv0 = h;
else
hv[-1] = h;
}
a += lda;
m1--;
if( uT )
uT += lduT + 1;
}
m1 -= m1 != 0;
n1 -= n1 != 0;
/* accumulate left transformations */
if( uT )
{
m1 = m - m1;
uT = u0 + m1 * lduT;
for( i = m1; i < nu; i++, uT += lduT )
{
memset( uT + m1, 0, (m - m1) * sizeof( uT[0] ));
uT[i] = 1.;
}
for( i = m1 - 1; i >= 0; i-- )
{
double s;
int lh = nu - i;
l = m - i;
hv = u0 + (lduT + 1) * i;
h = i == 0 ? ku0 : hv[-1];
assert( h <= 0 );
if( h != 0 )
{
uT = hv;
icvMatrAXPY3_64f( lh, l-1, hv+1, lduT, uT+1, h );
s = hv[0] * h;
for( k = 0; k < l; k++ ) hv[k] *= s;
hv[0] += 1;
}
else
{
for( j = 1; j < l; j++ )
hv[j] = 0;
for( j = 1; j < lh; j++ )
hv[j * lduT] = 0;
hv[0] = 1;
}
}
uT = u0;
}
/* accumulate right transformations */
if( vT )
{
n1 = n - n1;
vT = v0 + n1 * ldvT;
for( i = n1; i < nv; i++, vT += ldvT )
{
memset( vT + n1, 0, (n - n1) * sizeof( vT[0] ));
vT[i] = 1.;
}
for( i = n1 - 1; i >= 0; i-- )
{
double s;
int lh = nv - i;
l = n - i;
hv = v0 + (ldvT + 1) * i;
h = i == 0 ? kv0 : hv[-1];
assert( h <= 0 );
if( h != 0 )
{
vT = hv;
icvMatrAXPY3_64f( lh, l-1, hv+1, ldvT, vT+1, h );
s = hv[0] * h;
for( k = 0; k < l; k++ ) hv[k] *= s;
hv[0] += 1;
}
else
{
for( j = 1; j < l; j++ )
hv[j] = 0;
for( j = 1; j < lh; j++ )
hv[j * ldvT] = 0;
hv[0] = 1;
}
}
vT = v0;
}
for( i = 0; i < nm; i++ )
{
double tnorm = fabs( w[i] );
tnorm += fabs( e[i] );
if( anorm < tnorm )
anorm = tnorm;
}
anorm *= DBL_EPSILON;
/* diagonalization of the bidiagonal form */
for( k = nm - 1; k >= 0; k-- )
{
double z = 0;
iters = 0;
for( ;; ) /* do iterations */
{
double c, s, f, g, x, y;
int flag = 0;
/* test for splitting */
for( l = k; l >= 0; l-- )
{
if( fabs(e[l]) <= anorm )
{
flag = 1;
break;
}
assert( l > 0 );
if( fabs(w[l - 1]) <= anorm )
break;
}
if( !flag )
{
c = 0;
s = 1;
for( i = l; i <= k; i++ )
{
f = s * e[i];
e[i] *= c;
if( anorm + fabs( f ) == anorm )
break;
g = w[i];
h = pythag( f, g );
w[i] = h;
c = g / h;
s = -f / h;
if( uT )
icvGivens_64f( m, uT + lduT * (l - 1), uT + lduT * i, c, s );
}
}
z = w[k];
if( l == k || iters++ == MAX_ITERS )
break;
/* shift from bottom 2x2 minor */
x = w[l];
y = w[k - 1];
g = e[k - 1];
h = e[k];
f = 0.5 * (((g + z) / h) * ((g - z) / y) + y / h - h / y);
g = pythag( f, 1 );
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -