⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cxnorm.cpp

📁 opencv库在TI DM6437上的移植,目前包括两个库cv.lib和cxcore.lib的工程
💻 CPP
📖 第 1 页 / 共 5 页
字号:
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "_cxcore.h"

/****************************************************************************************\
*                                         N o r m                                        *
\****************************************************************************************/

#define ICV_NORM_CASE( _op_,                \
    _update_op_, worktype, len )            \
                                            \
    for( ; x <= (len) - 4; x += 4 )         \
    {                                       \
        worktype t0 = (src)[x];             \
        worktype t1 = (src)[x+1];           \
        t0 = _op_(t0);                      \
        t1 = _op_(t1);                      \
        norm = _update_op_( norm, t0 );     \
        norm = _update_op_( norm, t1 );     \
                                            \
        t0 = (src)[x+2];                    \
        t1 = (src)[x+3];                    \
        t0 = _op_(t0);                      \
        t1 = _op_(t1);                      \
        norm = _update_op_( norm, t0 );     \
        norm = _update_op_( norm, t1 );     \
    }                                       \
                                            \
    for( ; x < (len); x++ )                 \
    {                                       \
        worktype t0 = (src)[x];             \
        t0 = (worktype)_op_(t0);            \
        norm = _update_op_( norm, t0 );     \
    }


#define ICV_NORM_COI_CASE( _op_,            \
    _update_op_, worktype, len, cn )        \
                                            \
    for( ; x < (len); x++ )                 \
    {                                       \
        worktype t0 = (src)[x*(cn)];        \
        t0 = (worktype)_op_(t0);            \
        norm = _update_op_( norm, t0 );     \
    }


#define ICV_NORM_DIFF_CASE( _op_,           \
    _update_op_, worktype, len )            \
                                            \
    for( ; x <= (len) - 4; x += 4 )         \
    {                                       \
        worktype t0 = (src1)[x] - (src2)[x];\
        worktype t1 = (src1)[x+1]-(src2)[x+1];\
                                            \
        t0 = _op_(t0);                      \
        t1 = _op_(t1);                      \
                                            \
        norm = _update_op_( norm, t0 );     \
        norm = _update_op_( norm, t1 );     \
                                            \
        t0 = (src1)[x+2] - (src2)[x+2];     \
        t1 = (src1)[x+3] - (src2)[x+3];     \
                                            \
        t0 = _op_(t0);                      \
        t1 = _op_(t1);                      \
                                            \
        norm = _update_op_( norm, t0 );     \
        norm = _update_op_( norm, t1 );     \
    }                                       \
                                            \
    for( ; x < (len); x++ )                 \
    {                                       \
        worktype t0 = (src1)[x] - (src2)[x];\
        t0 = (worktype)_op_(t0);            \
        norm = _update_op_( norm, t0 );     \
    }


#define ICV_NORM_DIFF_COI_CASE( _op_, _update_op_, worktype, len, cn ) \
    for( ; x < (len); x++ )                                     \
    {                                                           \
        worktype t0 = (src1)[x*(cn)] - (src2)[x*(cn)];          \
        t0 = (worktype)_op_(t0);                                \
        norm = _update_op_( norm, t0 );                         \
    }


/*
 	The algorithm and its multiple variations below
    below accumulates the norm by blocks of size "block_size".
    Each block may span across multiple lines and it is
    not necessary aligned by row boundaries. Within a block
    the norm is accumulated to intermediate light-weight
    type (worktype). It really makes sense for 8u, 16s, 16u types
    and L1 & L2 norms, where worktype==int and normtype==int64.
    In other cases a simpler algorithm is used
*/
#define  ICV_DEF_NORM_NOHINT_BLOCK_FUNC_2D( name, _op_, _update_op_, \
    post_func, arrtype, normtype, worktype, block_size )        \
IPCVAPI_IMPL( CvStatus, name, ( const arrtype* src, int step,   \
    CvSize size, double* _norm ), (src, step, size, _norm) )    \
{                                                               \
    int remaining = block_size;                                 \
    normtype total_norm = 0;                                    \
    worktype norm = 0;                                          \
    step /= sizeof(src[0]);                                     \
                                                                \
    for( ; size.height--; src += step )                         \
    {                                                           \
        int x = 0;                                              \
        while( x < size.width )                                 \
        {                                                       \
            int limit = MIN( remaining, size.width - x );       \
            remaining -= limit;                                 \
            limit += x;                                         \
            ICV_NORM_CASE( _op_, _update_op_, worktype, limit );\
            if( remaining == 0 )                                \
            {                                                   \
                remaining = block_size;                         \
                total_norm += (normtype)norm;                   \
                norm = 0;                                       \
            }                                                   \
        }                                                       \
    }                                                           \
                                                                \
    total_norm += (normtype)norm;                               \
    *_norm = post_func((double)total_norm);                     \
    return CV_OK;                                               \
}


#define  ICV_DEF_NORM_NOHINT_FUNC_2D( name, _op_, _update_op_,  \
    post_func, arrtype, normtype, worktype, block_size )        \
IPCVAPI_IMPL( CvStatus, name, ( const arrtype* src, int step,   \
    CvSize size, double* _norm ), (src, step, size, _norm) )    \
{                                                               \
    normtype norm = 0;                                          \
    step /= sizeof(src[0]);                                     \
                                                                \
    for( ; size.height--; src += step )                         \
    {                                                           \
        int x = 0;                                              \
        ICV_NORM_CASE(_op_, _update_op_, worktype, size.width); \
    }                                                           \
                                                                \
    *_norm = post_func((double)norm);                           \
    return CV_OK;                                               \
}


/*
   In IPP only 32f flavors of norm functions are with hint.
   For float worktype==normtype==double, thus the block algorithm,
   described above, is not necessary.
 */
#define  ICV_DEF_NORM_HINT_FUNC_2D( name, _op_, _update_op_,    \
    post_func, arrtype, normtype, worktype, block_size )        \
IPCVAPI_IMPL( CvStatus, name, ( const arrtype* src, int step,   \
    CvSize size, double* _norm, CvHintAlgorithm /*hint*/ ),     \
    (src, step, size, _norm, cvAlgHintAccurate) )               \
{                                                               \
    normtype norm = 0;                                          \
    step /= sizeof(src[0]);                                     \
                                                                \
    for( ; size.height--; src += step )                         \
    {                                                           \
        int x = 0;                                              \
        ICV_NORM_CASE(_op_, _update_op_, worktype, size.width); \
    }                                                           \
                                                                \
    *_norm = post_func((double)norm);                           \
    return CV_OK;                                               \
}


#define  ICV_DEF_NORM_NOHINT_BLOCK_FUNC_2D_COI( name, _op_,     \
    _update_op_, post_func, arrtype,                            \
    normtype, worktype, block_size )                            \
static CvStatus CV_STDCALL name( const arrtype* src, int step,  \
                CvSize size, int cn, int coi, double* _norm )   \
{                                                               \
    int remaining = block_size;                                 \
    normtype total_norm = 0;                                    \
    worktype norm = 0;                                          \
    step /= sizeof(src[0]);                                     \
    src += coi - 1;                                             \
                                                                \
    for( ; size.height--; src += step )                         \
    {                                                           \
        int x = 0;                                              \
        while( x < size.width )                                 \
        {                                                       \
            int limit = MIN( remaining, size.width - x );       \
            remaining -= limit;                                 \
            limit += x;                                         \
            ICV_NORM_COI_CASE( _op_, _update_op_,               \
                               worktype, limit, cn );           \
            if( remaining == 0 )                                \
            {                                                   \
                remaining = block_size;                         \
                total_norm += (normtype)norm;                   \
                norm = 0;                                       \
            }                                                   \
        }                                                       \
    }                                                           \
                                                                \
    total_norm += (normtype)norm;                               \
    *_norm = post_func((double)total_norm);                     \
    return CV_OK;                                               \
}


#define  ICV_DEF_NORM_NOHINT_FUNC_2D_COI( name, _op_,           \
    _update_op_, post_func,                                     \
    arrtype, normtype, worktype, block_size )                   \
static CvStatus CV_STDCALL name( const arrtype* src, int step,  \
                CvSize size, int cn, int coi, double* _norm )   \
{                                                               \
    normtype norm = 0;                                          \
    step /= sizeof(src[0]);                                     \
    src += coi - 1;                                             \
                                                                \
    for( ; size.height--; src += step )                         \
    {                                                           \

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -