📄 cvhistogram.cpp
字号:
{
for( x = 0; x < size.width; x++ )
{
if( mask[x] )
{
int* binptr = bins;
for( i = 0; i < dims; i++ )
{
int idx = cvFloor((double)img[i][x]*uni_range[i][0]
+ uni_range[i][1]);
if( (unsigned)idx >= (unsigned)histsize[i] )
break;
binptr += idx*(mat->dim[i].step/sizeof(float));
}
if( i == dims )
binptr[0]++;
}
}
mask += maskStep;
}
for( i = 0; i < dims; i++ )
img[i] += step;
}
}
}
else
{
for( ; size.height--; )
{
for( x = 0; x < size.width; x++ )
{
if( !mask || mask[x] )
{
int* binptr = bins;
for( i = 0; i < dims; i++ )
{
float v = img[i][x];
float* thresh = hist->thresh2[i];
int idx = -1, sz = histsize[i];
while( v >= thresh[idx+1] && ++idx < sz )
/* nop */;
if( (unsigned)idx >= (unsigned)sz )
break;
binptr += idx*(mat->dim[i].step/sizeof(float));
}
if( i == dims )
binptr[0]++;
}
}
for( i = 0; i < dims; i++ )
img[i] += step;
if( mask )
mask += maskStep;
}
}
}
else
{
CvSparseMat* mat = (CvSparseMat*)(hist->bins);
int node_idx[CV_MAX_DIM];
for( ; size.height--; )
{
if( uniform )
{
for( x = 0; x < size.width; x++ )
{
if( !mask || mask[x] )
{
for( i = 0; i < dims; i++ )
{
int idx = cvFloor(img[i][x]*uni_range[i][0]
+ uni_range[i][1]);
if( (unsigned)idx >= (unsigned)histsize[i] )
break;
node_idx[i] = idx;
}
if( i == dims )
{
int* bin = (int*)cvPtrND( mat, node_idx, 0, 1, 0 );
bin[0]++;
}
}
}
}
else
{
for( x = 0; x < size.width; x++ )
{
if( !mask || mask[x] )
{
for( i = 0; i < dims; i++ )
{
float v = img[i][x];
float* thresh = hist->thresh2[i];
int idx = -1, sz = histsize[i];
while( v >= thresh[idx+1] && ++idx < sz )
/* nop */;
if( (unsigned)idx >= (unsigned)sz )
break;
node_idx[i] = idx;
}
if( i == dims )
{
int* bin = (int*)cvPtrND( mat, node_idx, 0, 1, 0 );
bin[0]++;
}
}
}
}
for( i = 0; i < dims; i++ )
img[i] += step;
if( mask )
mask += maskStep;
}
}
return CV_OK;
}
CV_IMPL void
cvCalcArrHist( CvArr** img, CvHistogram* hist,
int do_not_clear, const CvArr* mask )
{
CV_FUNCNAME( "cvCalcHist" );
__BEGIN__;
uchar* ptr[CV_MAX_DIM];
uchar* maskptr = 0;
int maskstep = 0, step = 0;
int i, dims;
int cont_flag = -1;
CvMat stub0, *mat0 = 0;
CvMatND dense;
CvSize size;
if( !CV_IS_HIST(hist))
CV_ERROR( CV_StsBadArg, "Bad histogram pointer" );
if( !img )
CV_ERROR( CV_StsNullPtr, "Null double array pointer" );
CV_CALL( dims = cvGetDims( hist->bins ));
for( i = 0; i < dims; i++ )
{
CvMat stub, *mat = (CvMat*)img[i];
CV_CALL( mat = cvGetMat( mat, i == 0 ? &stub0 : &stub, 0, 1 ));
if( CV_MAT_CN( mat->type ) != 1 )
CV_ERROR( CV_BadNumChannels, "Only 1-channel arrays are allowed here" );
if( i == 0 )
{
mat0 = mat;
step = mat0->step;
}
else
{
if( !CV_ARE_SIZES_EQ( mat0, mat ))
CV_ERROR( CV_StsUnmatchedSizes, "Not all the planes have equal sizes" );
if( mat0->step != mat->step )
CV_ERROR( CV_StsUnmatchedSizes, "Not all the planes have equal steps" );
if( !CV_ARE_TYPES_EQ( mat0, mat ))
CV_ERROR( CV_StsUnmatchedFormats, "Not all the planes have equal types" );
}
cont_flag &= mat->type;
ptr[i] = mat->data.ptr;
}
if( mask )
{
CvMat stub, *mat = (CvMat*)mask;
CV_CALL( mat = cvGetMat( mat, &stub, 0, 1 ));
if( !CV_IS_MASK_ARR(mat))
CV_ERROR( CV_StsBadMask, "Bad mask array" );
if( !CV_ARE_SIZES_EQ( mat0, mat ))
CV_ERROR( CV_StsUnmatchedSizes,
"Mask size does not match to other arrays\' size" );
maskptr = mat->data.ptr;
maskstep = mat->step;
cont_flag &= mat->type;
}
size = cvGetMatSize(mat0);
if( CV_IS_MAT_CONT( cont_flag ))
{
size.width *= size.height;
size.height = 1;
maskstep = step = CV_STUB_STEP;
}
if( !CV_IS_SPARSE_HIST(hist))
{
dense = *(CvMatND*)hist->bins;
dense.type = (dense.type & ~CV_MAT_TYPE_MASK) | CV_32SC1;
}
if( !do_not_clear )
{
CV_CALL( cvZero( hist->bins ));
}
else if( !CV_IS_SPARSE_HIST(hist))
{
CV_CALL( cvConvert( (CvMatND*)hist->bins, &dense ));
}
else
{
CvSparseMat* mat = (CvSparseMat*)(hist->bins);
CvSparseMatIterator iterator;
CvSparseNode* node;
for( node = cvInitSparseMatIterator( mat, &iterator );
node != 0; node = cvGetNextSparseNode( &iterator ))
{
Cv32suf* val = (Cv32suf*)CV_NODE_VAL( mat, node );
val->i = cvRound( val->f );
}
}
if( CV_MAT_DEPTH(mat0->type) > CV_8S && !CV_HIST_HAS_RANGES(hist))
CV_ERROR( CV_StsBadArg, "histogram ranges must be set (via cvSetHistBinRanges) "
"before calling the function" );
switch( CV_MAT_DEPTH(mat0->type) )
{
case CV_8U:
IPPI_CALL( icvCalcHist_8u_C1R( ptr, step, maskptr, maskstep, size, hist ));
break;
case CV_32F:
{
union { uchar** ptr; float** fl; } v;
v.ptr = ptr;
IPPI_CALL( icvCalcHist_32f_C1R( v.fl, step, maskptr, maskstep, size, hist ));
}
break;
default:
CV_ERROR( CV_StsUnsupportedFormat, "Unsupported array type" );
}
if( !CV_IS_SPARSE_HIST(hist))
{
CV_CALL( cvConvert( &dense, (CvMatND*)hist->bins ));
}
else
{
CvSparseMat* mat = (CvSparseMat*)(hist->bins);
CvSparseMatIterator iterator;
CvSparseNode* node;
for( node = cvInitSparseMatIterator( mat, &iterator );
node != 0; node = cvGetNextSparseNode( &iterator ))
{
Cv32suf* val = (Cv32suf*)CV_NODE_VAL( mat, node );
val->f = (float)val->i;
}
}
__END__;
}
/***************************** B A C K P R O J E C T *****************************/
// Calculates back project for one or more 8u arrays
static CvStatus CV_STDCALL
icvCalcBackProject_8u_C1R( uchar** img, int step, uchar* dst, int dstStep,
CvSize size, const CvHistogram* hist )
{
const int small_hist_size = 1<<12;
int* tab = 0;
int is_sparse = CV_IS_SPARSE_HIST(hist);
int dims, histsize[CV_MAX_DIM];
int i, x;
CvStatus status;
dims = cvGetDims( hist->bins, histsize );
tab = (int*)cvStackAlloc( dims*256*sizeof(int));
status = icvCalcHistLookupTables8u( hist, dims, histsize, tab );
if( status < 0 )
return status;
if( !is_sparse )
{
int total = 1;
CvMatND* mat = (CvMatND*)(hist->bins);
float* bins = mat->data.fl;
uchar* buffer = 0;
for( i = 0; i < dims; i++ )
total *= histsize[i];
if( dims <= 3 && total >= -ICV_HIST_DUMMY_IDX )
return CV_BADSIZE_ERR; // too big histogram
if( dims > 1 && total <= small_hist_size && CV_IS_MAT_CONT(mat->type))
{
buffer = (uchar*)cvAlloc(total);
if( !buffer )
return CV_OUTOFMEM_ERR;
for( i = 0; i < total; i++ )
{
int v = cvRound(bins[i]);
buffer[i] = CV_CAST_8U(v);
}
}
switch( dims )
{
case 1:
{
uchar tab1d[256];
for( i = 0; i < 256; i++ )
{
int idx = tab[i];
if( idx >= 0 )
{
int v = cvRound(bins[idx]);
tab1d[i] = CV_CAST_8U(v);
}
else
tab1d[i] = 0;
}
for( ; size.height--; img[0] += step, dst += dstStep )
{
uchar* ptr = img[0];
for( x = 0; x <= size.width - 4; x += 4 )
{
uchar v0 = tab1d[ptr[x]];
uchar v1 = tab1d[ptr[x+1]];
dst[x] = v0;
dst[x+1] = v1;
v0 = tab1d[ptr[x+2]];
v1 = tab1d[ptr[x+3]];
dst[x+2] = v0;
dst[x+3] = v1;
}
for( ; x < size.width; x++ )
dst[x] = tab1d[ptr[x]];
}
}
break;
case 2:
for( ; size.height--; img[0] += step, img[1] += step, dst += dstStep )
{
uchar* ptr0 = img[0];
uchar* ptr1 = img[1];
if( buffer )
{
for( x = 0; x < size.width; x++ )
{
int v0 = ptr0[x];
int v1 = ptr1[x];
int idx = tab[v0] + tab[256+v1];
int v = 0;
if( idx >= 0 )
v = buffer[idx];
dst[x] = (uchar)v;
}
}
else
{
for( x = 0; x < size.width; x++ )
{
int v0 = ptr0[x];
int v1 = ptr1[x];
int idx = tab[v0] + tab[256+v1];
int v = 0;
if( idx >= 0 )
{
v = cvRound(bins[idx]);
v = CV_CAST_8U(v);
}
dst[x] = (uchar)v;
}
}
}
break;
case 3:
for( ; size.height--; img[0] += step, img[1] += step,
img[2] += step, dst += dstStep )
{
uchar* ptr0 = img[0];
uchar* ptr1 = img[1];
uchar* ptr2 = img[2];
if( buffer )
{
for( x = 0; x < size.width; x++ )
{
int v0 = ptr0[x];
int v1 = ptr1[x];
int v2 = ptr2[x];
int idx = tab[v0] + tab[256+v1] + tab[512+v2];
int v = 0;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -