📄 cvfundam.cpp
字号:
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "_cv.h"
/* Evaluation of Fundamental Matrix from point correspondences.
The original code has been written by Valery Mosyagin */
/* The algorithms (except for RANSAC) and the notation have been taken from
Zhengyou Zhang's research report
"Determining the Epipolar Geometry and its Uncertainty: A Review"
that can be found at http://www-sop.inria.fr/robotvis/personnel/zzhang/zzhang-eng.html */
/************************************** 7-point algorithm *******************************/
static int
icvFMatrix_7Point( const CvPoint2D64f* m0, const CvPoint2D64f* m1, double* fmatrix )
{
double a[7*9], w[7], v[9*9], c[4], r[3];
double* f1, *f2;
double t0, t1, t2;
CvMat A = cvMat( 7, 9, CV_64F, a );
CvMat V = cvMat( 9, 9, CV_64F, v );
CvMat W = cvMat( 7, 1, CV_64F, w );
CvMat coeffs = cvMat( 1, 4, CV_64F, c );
CvMat roots = cvMat( 1, 3, CV_64F, r );
int i, k, n;
assert( m0 && m1 && fmatrix );
// form a linear system: i-th row of A(=a) represents
// the equation: (m1[i], 1)'*F*(m0[i], 1) = 0
for( i = 0; i < 7; i++ )
{
double x0 = m0[i].x, y0 = m0[i].y;
double x1 = m1[i].x, y1 = m1[i].y;
a[i*9+0] = x1*x0;
a[i*9+1] = x1*y0;
a[i*9+2] = x1;
a[i*9+3] = y1*x0;
a[i*9+4] = y1*y0;
a[i*9+5] = y1;
a[i*9+6] = x0;
a[i*9+7] = y0;
a[i*9+8] = 1;
}
// A*(f11 f12 ... f33)' = 0 is singular (7 equations for 9 variables), so
// the solution is linear subspace of dimensionality 2.
// => use the last two singular vectors as a basis of the space
// (according to SVD properties)
cvSVD( &A, &W, 0, &V, CV_SVD_MODIFY_A + CV_SVD_V_T );
f1 = v + 7*9;
f2 = v + 8*9;
// f1, f2 is a basis => lambda*f1 + mu*f2 is an arbitrary f. matrix.
// as it is determined up to a scale, normalize lambda & mu (lambda + mu = 1),
// so f ~ lambda*f1 + (1 - lambda)*f2.
// use the additional constraint det(f) = det(lambda*f1 + (1-lambda)*f2) to find lambda.
// it will be a cubic equation.
// find c - polynomial coefficients.
for( i = 0; i < 9; i++ )
f1[i] -= f2[i];
t0 = f2[4]*f2[8] - f2[5]*f2[7];
t1 = f2[3]*f2[8] - f2[5]*f2[6];
t2 = f2[3]*f2[7] - f2[4]*f2[6];
c[3] = f2[0]*t0 - f2[1]*t1 + f2[2]*t2;
c[2] = f1[0]*t0 - f1[1]*t1 + f1[2]*t2 -
f1[3]*(f2[1]*f2[8] - f2[2]*f2[7]) +
f1[4]*(f2[0]*f2[8] - f2[2]*f2[6]) -
f1[5]*(f2[0]*f2[7] - f2[1]*f2[6]) +
f1[6]*(f2[1]*f2[5] - f2[2]*f2[4]) -
f1[7]*(f2[0]*f2[5] - f2[2]*f2[3]) +
f1[8]*(f2[0]*f2[4] - f2[1]*f2[3]);
t0 = f1[4]*f1[8] - f1[5]*f1[7];
t1 = f1[3]*f1[8] - f1[5]*f1[6];
t2 = f1[3]*f1[7] - f1[4]*f1[6];
c[1] = f2[0]*t0 - f2[1]*t1 + f2[2]*t2 -
f2[3]*(f1[1]*f1[8] - f1[2]*f1[7]) +
f2[4]*(f1[0]*f1[8] - f1[2]*f1[6]) -
f2[5]*(f1[0]*f1[7] - f1[1]*f1[6]) +
f2[6]*(f1[1]*f1[5] - f1[2]*f1[4]) -
f2[7]*(f1[0]*f1[5] - f1[2]*f1[3]) +
f2[8]*(f1[0]*f1[4] - f1[1]*f1[3]);
c[0] = f1[0]*t0 - f1[1]*t1 + f1[2]*t2;
// solve the cubic equation; there can be 1 to 3 roots ...
n = cvSolveCubic( &coeffs, &roots );
if( n < 1 || n > 3 )
return n;
for( k = 0; k < n; k++, fmatrix += 9 )
{
// for each root form the fundamental matrix
double lambda = r[k], mu = 1.;
double s = f1[8]*r[k] + f2[8];
// normalize each matrix, so that F(3,3) (~fmatrix[8]) == 1
if( fabs(s) > DBL_EPSILON )
{
mu = 1./s;
lambda *= mu;
fmatrix[8] = 1.;
}
else
fmatrix[8] = 0.;
for( i = 0; i < 8; i++ )
fmatrix[i] = f1[i]*lambda + f2[i]*mu;
}
return n;
}
/*************************************** 8-point algorithm ******************************/
static int
icvFMatrix_8Point( const CvPoint2D64f* m0, const CvPoint2D64f* m1,
const uchar* mask, int count, double* fmatrix )
{
int result = 0;
CvMat* A = 0;
double w[9], v[9*9];
CvMat W = cvMat( 1, 9, CV_64F, w);
CvMat V = cvMat( 9, 9, CV_64F, v);
CvMat U, F0, TF;
int i, good_count = 0;
CvPoint2D64f m0c = {0,0}, m1c = {0,0};
double t, scale0 = 0, scale1 = 0;
double* a;
int a_step;
CV_FUNCNAME( "icvFMatrix_8Point" );
__BEGIN__;
assert( m0 && m1 && fmatrix );
// compute centers and average distances for each of the two point sets
for( i = 0; i < count; i++ )
if( !mask || mask[i] )
{
double x = m0[i].x, y = m0[i].y;
m0c.x += x; m0c.y += y;
x = m1[i].x, y = m1[i].y;
m1c.x += x; m1c.y += y;
good_count++;
}
if( good_count < 8 )
EXIT;
// calculate the normalizing transformations for each of the point sets:
// after the transformation each set will have the mass center at the coordinate origin
// and the average distance from the origin will be ~sqrt(2).
t = 1./good_count;
m0c.x *= t; m0c.y *= t;
m1c.x *= t; m1c.y *= t;
for( i = 0; i < count; i++ )
if( !mask || mask[i] )
{
double x = m0[i].x - m0c.x, y = m0[i].y - m0c.y;
scale0 += sqrt(x*x + y*y);
x = fabs(m1[i].x - m1c.x), y = fabs(m1[i].y - m1c.y);
scale1 += sqrt(x*x + y*y);
}
scale0 *= t;
scale1 *= t;
if( scale0 < FLT_EPSILON || scale1 < FLT_EPSILON )
EXIT;
scale0 = sqrt(2.)/scale0;
scale1 = sqrt(2.)/scale1;
CV_CALL( A = cvCreateMat( good_count, 9, CV_64F ));
a = A->data.db;
a_step = A->step / sizeof(a[0]);
// form a linear system: for each selected pair of points m0 & m1,
// the row of A(=a) represents the equation: (m1, 1)'*F*(m0, 1) = 0
for( i = 0; i < count; i++ )
{
if( !mask || mask[i] )
{
double x0 = (m0[i].x - m0c.x)*scale0;
double y0 = (m0[i].y - m0c.y)*scale0;
double x1 = (m1[i].x - m1c.x)*scale1;
double y1 = (m1[i].y - m1c.y)*scale1;
a[0] = x1*x0;
a[1] = x1*y0;
a[2] = x1;
a[3] = y1*x0;
a[4] = y1*y0;
a[5] = y1;
a[6] = x0;
a[7] = y0;
a[8] = 1;
a += a_step;
}
}
cvSVD( A, &W, 0, &V, CV_SVD_MODIFY_A + CV_SVD_V_T );
for( i = 0; i < 8; i++ )
{
if( fabs(w[i]) < FLT_EPSILON )
break;
}
if( i < 7 )
EXIT;
F0 = cvMat( 3, 3, CV_64F, v + 9*8 ); // take the last column of v as a solution of Af = 0
// make F0 singular (of rank 2) by decomposing it with SVD,
// zeroing the last diagonal element of W and then composing the matrices back.
// use v as a temporary storage for different 3x3 matrices
W = U = V = TF = F0;
W.data.db = v;
U.data.db = v + 9;
V.data.db = v + 18;
TF.data.db = v + 27;
cvSVD( &F0, &W, &U, &V, CV_SVD_MODIFY_A + CV_SVD_U_T + CV_SVD_V_T );
W.data.db[8] = 0.;
// F0 <- U*diag([W(1), W(2), 0])*V'
cvGEMM( &U, &W, 1., 0, 0., &TF, CV_GEMM_A_T );
cvGEMM( &TF, &V, 1., 0, 0., &F0, 0/*CV_GEMM_B_T*/ );
// apply the transformation that is inverse
// to what we used to normalize the point coordinates
{
double tt0[] = { scale0, 0, -scale0*m0c.x, 0, scale0, -scale0*m0c.y, 0, 0, 1 };
double tt1[] = { scale1, 0, -scale1*m1c.x, 0, scale1, -scale1*m1c.y, 0, 0, 1 };
CvMat T0, T1;
T0 = T1 = F0;
T0.data.db = tt0;
T1.data.db = tt1;
// F0 <- T1'*F0*T0
cvGEMM( &T1, &F0, 1., 0, 0., &TF, CV_GEMM_A_T );
F0.data.db = fmatrix;
cvGEMM( &TF, &T0, 1., 0, 0., &F0, 0 );
// make F(3,3) = 1
if( fabs(F0.data.db[8]) > FLT_EPSILON )
cvScale( &F0, &F0, 1./F0.data.db[8] );
}
result = 1;
__END__;
cvReleaseMat( &A );
return result;
}
/************************************ RANSAC algorithm **********************************/
static int
icvFMatrix_RANSAC( const CvPoint2D64f* m0, const CvPoint2D64f* m1,
uchar* mask, int count, double* fmatrix,
double threshold, double p,
unsigned rng_seed, int use_8point )
{
int result = 0;
const int max_random_iters = 1000;
const int sample_size = 7;
uchar* curr_mask = 0;
uchar* temp_mask = 0;
CV_FUNCNAME( "icvFMatrix_RANSAC" );
__BEGIN__;
double ff[9*3];
CvRNG rng = cvRNG(rng_seed);
int i, j, k, sample_count, max_samples = 500;
int best_good_count = 0;
assert( m0 && m1 && fmatrix && 0 < p && p < 1 && threshold > 0 );
threshold *= threshold;
CV_CALL( curr_mask = (uchar*)cvAlloc( count ));
if( !mask && use_8point )
{
CV_CALL( temp_mask = (uchar*)cvAlloc( count ));
mask = temp_mask;
}
// find the best fundamental matrix (giving the least backprojection error)
// by picking at most <max_samples> 7-tuples of corresponding points
// <max_samples> may be updated (decreased) within the loop based on statistics of outliers
for( sample_count = 0; sample_count < max_samples; sample_count++ )
{
int idx[sample_size], n;
CvPoint2D64f ms0[sample_size], ms1[sample_size];
// choose random <sample_size> (=7) points
for( i = 0; i < sample_size; i++ )
{
for( k = 0; k < max_random_iters; k++ )
{
idx[i] = cvRandInt(&rng) % count;
for( j = 0; j < i; j++ )
if( idx[j] == idx[i] )
break;
if( j == i )
{
ms0[i] = m0[idx[i]];
ms1[i] = m1[idx[i]];
break;
}
}
if( k >= max_random_iters )
break;
}
if( i < sample_size )
continue;
// find 1 or 3 fundamental matrices out of the 7 point correspondences
n = icvFMatrix_7Point( ms0, ms1, ff );
if( n < 1 || n > 3 )
continue;
// for each matrix calculate the backprojection error
// (distance to the corresponding epipolar lines) for each point and thus find
// the number of in-liers.
for( k = 0; k < n; k++ )
{
const double* f = ff + k*9;
int good_count = 0;
for( i = 0; i < count; i++ )
{
double d0, d1, s0, s1;
double a = f[0]*m0[i].x + f[1]*m0[i].y + f[2];
double b = f[3]*m0[i].x + f[4]*m0[i].y + f[5];
double c = f[6]*m0[i].x + f[7]*m0[i].y + f[8];
s1 = a*a + b*b;
d1 = m1[i].x*a + m1[i].y*b + c;
a = f[0]*m1[i].x + f[3]*m1[i].y + f[6];
b = f[1]*m1[i].x + f[4]*m1[i].y + f[7];
c = f[2]*m1[i].x + f[5]*m1[i].y + f[8];
s0 = a*a + b*b;
d0 = m0[i].x*a + m0[i].y*b + c;
curr_mask[i] = d1*d1 < threshold*s1 && d0*d0 < threshold*s0;
good_count += curr_mask[i];
}
if( good_count > MAX( best_good_count, 6 ) )
{
double ep, lp, lep;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -