📄 cvdistransform.cpp
字号:
{
t0 = t;
l0 = lls[j+lstep-1];
}
t = tmp[j+step-2] + LONG_DIST;
if( t0 > t )
{
t0 = t;
l0 = lls[j+lstep-2];
}
t = tmp[j+1] + HV_DIST;
if( t0 > t )
{
t0 = t;
l0 = lls[j+1];
}
tmp[j] = t0;
lls[j] = l0;
}
d[j] = (float)(t0 * scale);
}
}
return CV_OK;
}
static CvStatus
icvGetDistanceTransformMask( int maskType, float *metrics )
{
if( !metrics )
return CV_NULLPTR_ERR;
switch (maskType)
{
case 30:
metrics[0] = 1.0f;
metrics[1] = 1.0f;
break;
case 31:
metrics[0] = 1.0f;
metrics[1] = 2.0f;
break;
case 32:
metrics[0] = 0.955f;
metrics[1] = 1.3693f;
break;
case 50:
metrics[0] = 1.0f;
metrics[1] = 1.0f;
metrics[2] = 2.0f;
break;
case 51:
metrics[0] = 1.0f;
metrics[1] = 2.0f;
metrics[2] = 3.0f;
break;
case 52:
metrics[0] = 1.0f;
metrics[1] = 1.4f;
metrics[2] = 2.1969f;
break;
default:
return CV_BADRANGE_ERR;
}
return CV_OK;
}
static void
icvTrueDistTrans( const CvMat* src, CvMat* dst )
{
CvMat* buffer = 0;
CV_FUNCNAME( "cvDistTransform2" );
__BEGIN__;
int i, m, n;
int sstep, dstep;
const float inf = 1e6f;
int thread_count = cvGetNumThreads();
int pass1_sz, pass2_sz;
if( !CV_ARE_SIZES_EQ( src, dst ))
CV_ERROR( CV_StsUnmatchedSizes, "" );
if( CV_MAT_TYPE(src->type) != CV_8UC1 ||
CV_MAT_TYPE(dst->type) != CV_32FC1 )
CV_ERROR( CV_StsUnsupportedFormat,
"The input image must have 8uC1 type and the output one must have 32fC1 type" );
m = src->rows;
n = src->cols;
// (see stage 1 below):
// sqr_tab: 2*m, sat_tab: 3*m + 1, d: m*thread_count,
pass1_sz = src->rows*(5 + thread_count) + 1;
// (see stage 2):
// sqr_tab & inv_tab: n each; f & v: n*thread_count each; z: (n+1)*thread_count
pass2_sz = src->cols*(2 + thread_count*3) + thread_count;
CV_CALL( buffer = cvCreateMat( 1, MAX(pass1_sz, pass2_sz), CV_32FC1 ));
sstep = src->step;
dstep = dst->step / sizeof(float);
// stage 1: compute 1d distance transform of each column
{
float* sqr_tab = buffer->data.fl;
int* sat_tab = (int*)(sqr_tab + m*2);
const int shift = m*2;
for( i = 0; i < m; i++ )
sqr_tab[i] = (float)(i*i);
for( i = m; i < m*2; i++ )
sqr_tab[i] = inf;
for( i = 0; i < shift; i++ )
sat_tab[i] = 0;
for( ; i <= m*3; i++ )
sat_tab[i] = i - shift;
#ifdef _OPENMP
#pragma omp parallel for num_threads(thread_count)
#endif
for( i = 0; i < n; i++ )
{
const uchar* sptr = src->data.ptr + i + (m-1)*sstep;
float* dptr = dst->data.fl + i;
int* d = (int*)(sat_tab + m*3+1+m*cvGetThreadNum());
int j, dist = m-1;
for( j = m-1; j >= 0; j--, sptr -= sstep )
{
dist = (dist + 1) & (sptr[0] == 0 ? 0 : -1);
d[j] = dist;
}
dist = m-1;
for( j = 0; j < m; j++, dptr += dstep )
{
dist = dist + 1 - sat_tab[dist + 1 - d[j] + shift];
d[j] = dist;
dptr[0] = sqr_tab[dist];
}
}
}
// stage 2: compute modified distance transform for each row
{
float* inv_tab = buffer->data.fl;
float* sqr_tab = inv_tab + n;
inv_tab[0] = sqr_tab[0] = 0.f;
for( i = 1; i < n; i++ )
{
inv_tab[i] = (float)(0.5/i);
sqr_tab[i] = (float)(i*i);
}
#ifdef _OPENMP
#pragma omp parallel for num_threads(thread_count), schedule(dynamic)
#endif
for( i = 0; i < m; i++ )
{
float* d = (float*)(dst->data.ptr + i*dst->step);
float* f = sqr_tab + n + (n*3+1)*cvGetThreadNum();
float* z = f + n;
int* v = (int*)(z + n + 1);
int p, q, k;
v[0] = 0;
z[0] = -inf;
z[1] = inf;
f[0] = d[0];
for( q = 1, k = 0; q < n; q++ )
{
float fq = d[q];
f[q] = fq;
for(;;k--)
{
p = v[k];
float s = (fq + sqr_tab[q] - d[p] - sqr_tab[p])*inv_tab[q - p];
if( s > z[k] )
{
k++;
v[k] = q;
z[k] = s;
z[k+1] = inf;
break;
}
}
}
for( q = 0, k = 0; q < n; q++ )
{
while( z[k+1] < q )
k++;
p = v[k];
d[q] = sqr_tab[abs(q - p)] + f[p];
}
}
}
cvPow( dst, dst, 0.5 );
__END__;
cvReleaseMat( &buffer );
}
/*********************************** IPP functions *********************************/
icvDistanceTransform_3x3_8u32f_C1R_t icvDistanceTransform_3x3_8u32f_C1R_p = 0;
icvDistanceTransform_5x5_8u32f_C1R_t icvDistanceTransform_5x5_8u32f_C1R_p = 0;
typedef CvStatus (CV_STDCALL * CvIPPDistTransFunc)( const uchar* src, int srcstep,
float* dst, int dststep,
CvSize size, const float* metrics );
/***********************************************************************************/
typedef CvStatus (CV_STDCALL * CvDistTransFunc)( const uchar* src, int srcstep,
int* temp, int tempstep,
float* dst, int dststep,
CvSize size, const float* metrics );
/* Wrapper function for distance transform group */
CV_IMPL void
cvDistTransform( const void* srcarr, void* dstarr,
int distType, int maskSize,
const float *mask,
void* labelsarr )
{
CvMat* temp = 0;
CvMat* src_copy = 0;
CvMemStorage* st = 0;
CV_FUNCNAME( "cvDistTransform" );
__BEGIN__;
float _mask[5];
CvMat srcstub, *src = (CvMat*)srcarr;
CvMat dststub, *dst = (CvMat*)dstarr;
CvMat lstub, *labels = (CvMat*)labelsarr;
CvSize size;
CvIPPDistTransFunc ipp_func = 0;
CV_CALL( src = cvGetMat( src, &srcstub ));
CV_CALL( dst = cvGetMat( dst, &dststub ));
if( !CV_IS_MASK_ARR( src ) || CV_MAT_TYPE( dst->type ) != CV_32FC1 )
CV_ERROR( CV_StsUnsupportedFormat, "source image must be 8uC1 and the distance map must be 32fC1" );
if( !CV_ARE_SIZES_EQ( src, dst ))
CV_ERROR( CV_StsUnmatchedSizes, "the source and the destination images must be of the same size" );
if( maskSize != CV_DIST_MASK_3 && maskSize != CV_DIST_MASK_5 && maskSize != CV_DIST_MASK_PRECISE )
CV_ERROR( CV_StsBadSize, "Mask size should be 3 or 5 or 0 (presize)" );
if( distType == CV_DIST_C || distType == CV_DIST_L1 )
maskSize = !labels ? CV_DIST_MASK_3 : CV_DIST_MASK_5;
else if( distType == CV_DIST_L2 && labels )
maskSize = CV_DIST_MASK_5;
if( maskSize == CV_DIST_MASK_PRECISE )
{
CV_CALL( icvTrueDistTrans( src, dst ));
EXIT;
}
if( labels )
{
CV_CALL( labels = cvGetMat( labels, &lstub ));
if( CV_MAT_TYPE( labels->type ) != CV_32SC1 )
CV_ERROR( CV_StsUnsupportedFormat, "the output array of labels must be 32sC1" );
if( !CV_ARE_SIZES_EQ( labels, dst ))
CV_ERROR( CV_StsUnmatchedSizes, "the array of labels has a different size" );
if( maskSize == CV_DIST_MASK_3 )
CV_ERROR( CV_StsNotImplemented,
"3x3 mask can not be used for \"labeled\" distance transform. Use 5x5 mask" );
}
if( distType == CV_DIST_C || distType == CV_DIST_L1 || distType == CV_DIST_L2 )
{
icvGetDistanceTransformMask( (distType == CV_DIST_C ? 0 :
distType == CV_DIST_L1 ? 1 : 2) + maskSize*10, _mask );
}
else if( distType == CV_DIST_USER )
{
if( !mask )
CV_ERROR( CV_StsNullPtr, "" );
memcpy( _mask, mask, (maskSize/2 + 1)*sizeof(float));
}
if( !labels )
ipp_func = maskSize == CV_DIST_MASK_3 ? icvDistanceTransform_3x3_8u32f_C1R_p :
icvDistanceTransform_5x5_8u32f_C1R_p;
size = cvGetMatSize(src);
if( ipp_func && src->cols >= 4 && src->rows >= 2 )
{
IPPI_CALL( ipp_func( src->data.ptr, src->step,
dst->data.fl, dst->step, size, _mask ));
}
else
{
int border = maskSize == CV_DIST_MASK_3 ? 1 : 2;
CV_CALL( temp = cvCreateMat( size.height + border*2, size.width + border*2, CV_32SC1 ));
if( !labels )
{
CvDistTransFunc func = maskSize == CV_DIST_MASK_3 ?
icvDistanceTransform_3x3_C1R :
icvDistanceTransform_5x5_C1R;
func( src->data.ptr, src->step, temp->data.i, temp->step,
dst->data.fl, dst->step, size, _mask );
}
else
{
CvSeq *contours = 0;
CvPoint top_left = {0,0}, bottom_right = {size.width-1,size.height-1};
int label;
CV_CALL( st = cvCreateMemStorage() );
CV_CALL( src_copy = cvCreateMat( size.height, size.width, src->type ));
cvCmpS( src, 0, src_copy, CV_CMP_EQ );
cvFindContours( src_copy, st, &contours, sizeof(CvContour),
CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
cvZero( labels );
for( label = 1; contours != 0; contours = contours->h_next, label++ )
{
CvScalar area_color = cvScalarAll(label);
cvDrawContours( labels, contours, area_color, area_color, -255, -1, 8 );
}
cvCopy( src, src_copy );
cvRectangle( src_copy, top_left, bottom_right, cvScalarAll(255), 1, 8 );
icvDistanceTransformEx_5x5_C1R( src_copy->data.ptr, src_copy->step, temp->data.i, temp->step,
dst->data.fl, dst->step, labels->data.i, labels->step, size, _mask );
}
}
__END__;
cvReleaseMat( &temp );
cvReleaseMat( &src_copy );
cvReleaseMemStorage( &st );
}
/* End of file. */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -