📄 cvcalibinit.cpp
字号:
{
if( quads[k].neighbors[j] )
continue;
dx = pt.x - quads[k].corners[j]->pt.x;
dy = pt.y - quads[k].corners[j]->pt.y;
dist = dx * dx + dy * dy;
if( dist < min_dist &&
dist <= cur_quad->edge_len*thresh_scale &&
dist <= quads[k].edge_len*thresh_scale )
{
closest_corner_idx = j;
closest_quad = &quads[k];
min_dist = dist;
}
}
}
// we found a matching corner point?
if( closest_corner_idx >= 0 && min_dist < FLT_MAX )
{
// If another point from our current quad is closer to the found corner
// than the current one, then we don't count this one after all.
// This is necessary to support small squares where otherwise the wrong
// corner will get matched to closest_quad;
closest_corner = closest_quad->corners[closest_corner_idx];
for( j = 0; j < 4; j++ )
{
if( cur_quad->neighbors[j] == closest_quad )
break;
dx = closest_corner->pt.x - cur_quad->corners[j]->pt.x;
dy = closest_corner->pt.y - cur_quad->corners[j]->pt.y;
if( dx * dx + dy * dy < min_dist )
break;
}
if( j < 4 || cur_quad->count >= 4 || closest_quad->count >= 4 )
continue;
// Check that each corner is a neighbor of different quads
for( j = 0; j < closest_quad->count; j++ )
{
if( closest_quad->neighbors[j] == cur_quad )
break;
}
if( j < closest_quad->count )
continue;
// check whether the closest corner to closest_corner
// is different from cur_quad->corners[i]->pt
for( k = 0; k < quad_count; k++ )
{
CvCBQuad* q = &quads[k];
if( k == idx || q == closest_quad )
continue;
for( j = 0; j < 4; j++ )
if( !q->neighbors[j] )
{
dx = closest_corner->pt.x - q->corners[j]->pt.x;
dy = closest_corner->pt.y - q->corners[j]->pt.y;
dist = dx*dx + dy*dy;
if( dist < min_dist )
break;
}
if( j < 4 )
break;
}
if( k < quad_count )
continue;
closest_corner->pt.x = (pt.x + closest_corner->pt.x) * 0.5f;
closest_corner->pt.y = (pt.y + closest_corner->pt.y) * 0.5f;
// We've found one more corner - remember it
cur_quad->count++;
cur_quad->neighbors[i] = closest_quad;
cur_quad->corners[i] = closest_corner;
closest_quad->count++;
closest_quad->neighbors[closest_corner_idx] = cur_quad;
}
}
}
}
//=====================================================================================
static int
icvGenerateQuads( CvCBQuad **out_quads, CvCBCorner **out_corners,
CvMemStorage *storage, CvMat *image, int flags )
{
int quad_count = 0;
CvMemStorage *temp_storage = 0;
if( out_quads )
*out_quads = 0;
if( out_corners )
*out_corners = 0;
CV_FUNCNAME( "icvGenerateQuads" );
__BEGIN__;
CvSeq *src_contour = 0;
CvSeq *root;
CvContourEx* board = 0;
CvContourScanner scanner;
int i, idx, min_size;
CV_ASSERT( out_corners && out_quads );
// empiric bound for minimal allowed perimeter for squares
min_size = cvRound( image->cols * image->rows * .03 * 0.01 * 0.92 );
// create temporary storage for contours and the sequence of pointers to found quadrangles
CV_CALL( temp_storage = cvCreateChildMemStorage( storage ));
CV_CALL( root = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvSeq*), temp_storage ));
// initialize contour retrieving routine
CV_CALL( scanner = cvStartFindContours( image, temp_storage, sizeof(CvContourEx),
CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE ));
// get all the contours one by one
while( (src_contour = cvFindNextContour( scanner )) != 0 )
{
CvSeq *dst_contour = 0;
CvRect rect = ((CvContour*)src_contour)->rect;
// reject contours with too small perimeter
if( CV_IS_SEQ_HOLE(src_contour) && rect.width*rect.height >= min_size )
{
const int min_approx_level = 2, max_approx_level = MAX_CONTOUR_APPROX;
int approx_level;
for( approx_level = min_approx_level; approx_level <= max_approx_level; approx_level++ )
{
dst_contour = cvApproxPoly( src_contour, sizeof(CvContour), temp_storage,
CV_POLY_APPROX_DP, (float)approx_level );
// we call this again on its own output, because sometimes
// cvApproxPoly() does not simplify as much as it should.
dst_contour = cvApproxPoly( dst_contour, sizeof(CvContour), temp_storage,
CV_POLY_APPROX_DP, (float)approx_level );
if( dst_contour->total == 4 )
break;
}
// reject non-quadrangles
if( dst_contour->total == 4 && cvCheckContourConvexity(dst_contour) )
{
CvPoint pt[4];
double d1, d2, p = cvContourPerimeter(dst_contour);
double area = fabs(cvContourArea(dst_contour, CV_WHOLE_SEQ));
double dx, dy;
for( i = 0; i < 4; i++ )
pt[i] = *(CvPoint*)cvGetSeqElem(dst_contour, i);
dx = pt[0].x - pt[2].x;
dy = pt[0].y - pt[2].y;
d1 = sqrt(dx*dx + dy*dy);
dx = pt[1].x - pt[3].x;
dy = pt[1].y - pt[3].y;
d2 = sqrt(dx*dx + dy*dy);
// philipg. Only accept those quadrangles which are more square
// than rectangular and which are big enough
double d3, d4;
dx = pt[0].x - pt[1].x;
dy = pt[0].y - pt[1].y;
d3 = sqrt(dx*dx + dy*dy);
dx = pt[1].x - pt[2].x;
dy = pt[1].y - pt[2].y;
d4 = sqrt(dx*dx + dy*dy);
if( !(flags & CV_CALIB_CB_FILTER_QUADS) ||
d3*4 > d4 && d4*4 > d3 && d3*d4 < area*1.5 && area > min_size &&
d1 >= 0.15 * p && d2 >= 0.15 * p )
{
CvContourEx* parent = (CvContourEx*)(src_contour->v_prev);
parent->counter++;
if( !board || board->counter < parent->counter )
board = parent;
dst_contour->v_prev = (CvSeq*)parent;
//for( i = 0; i < 4; i++ ) cvLine( debug_img, pt[i], pt[(i+1)&3], cvScalar(200,255,255), 1, CV_AA, 0 );
cvSeqPush( root, &dst_contour );
}
}
}
}
// finish contour retrieving
cvEndFindContours( &scanner );
// allocate quad & corner buffers
CV_CALL( *out_quads = (CvCBQuad*)cvAlloc(root->total * sizeof((*out_quads)[0])));
CV_CALL( *out_corners = (CvCBCorner*)cvAlloc(root->total * 4 * sizeof((*out_corners)[0])));
// Create array of quads structures
for( idx = 0; idx < root->total; idx++ )
{
CvCBQuad* q = &(*out_quads)[quad_count];
src_contour = *(CvSeq**)cvGetSeqElem( root, idx );
if( (flags & CV_CALIB_CB_FILTER_QUADS) && src_contour->v_prev != (CvSeq*)board )
continue;
// reset group ID
memset( q, 0, sizeof(*q) );
q->group_idx = -1;
assert( src_contour->total == 4 );
for( i = 0; i < 4; i++ )
{
CvPoint2D32f pt = cvPointTo32f(*(CvPoint*)cvGetSeqElem(src_contour, i));
CvCBCorner* corner = &(*out_corners)[quad_count*4 + i];
memset( corner, 0, sizeof(*corner) );
corner->pt = pt;
q->corners[i] = corner;
}
q->edge_len = FLT_MAX;
for( i = 0; i < 4; i++ )
{
float dx = q->corners[i]->pt.x - q->corners[(i+1)&3]->pt.x;
float dy = q->corners[i]->pt.y - q->corners[(i+1)&3]->pt.y;
float d = dx*dx + dy*dy;
if( q->edge_len > d )
q->edge_len = d;
}
quad_count++;
}
__END__;
if( cvGetErrStatus() < 0 )
{
if( out_quads )
cvFree( out_quads );
if( out_corners )
cvFree( out_corners );
quad_count = 0;
}
cvReleaseMemStorage( &temp_storage );
return quad_count;
}
CV_IMPL void
cvDrawChessboardCorners( CvArr* _image, CvSize pattern_size,
CvPoint2D32f* corners, int count, int found )
{
CV_FUNCNAME( "cvDrawChessboardCorners" );
__BEGIN__;
const int shift = 0;
const int radius = 4;
const int r = radius*(1 << shift);
int i;
CvMat stub, *image;
double scale = 1;
int type, cn, line_type;
CV_CALL( image = cvGetMat( _image, &stub ));
type = CV_MAT_TYPE(image->type);
cn = CV_MAT_CN(type);
if( cn != 1 && cn != 3 && cn != 4 )
CV_ERROR( CV_StsUnsupportedFormat, "Number of channels must be 1, 3 or 4" );
switch( CV_MAT_DEPTH(image->type) )
{
case CV_8U:
scale = 1;
break;
case CV_16U:
scale = 256;
break;
case CV_32F:
scale = 1./255;
break;
default:
CV_ERROR( CV_StsUnsupportedFormat,
"Only 8-bit, 16-bit or floating-point 32-bit images are supported" );
}
line_type = type == CV_8UC1 || type == CV_8UC3 ? CV_AA : 8;
if( !found )
{
CvScalar color = {{0,0,255}};
if( cn == 1 )
color = cvScalarAll(200);
color.val[0] *= scale;
color.val[1] *= scale;
color.val[2] *= scale;
color.val[3] *= scale;
for( i = 0; i < count; i++ )
{
CvPoint pt;
pt.x = cvRound(corners[i].x*(1 << shift));
pt.y = cvRound(corners[i].y*(1 << shift));
cvLine( image, cvPoint( pt.x - r, pt.y - r ),
cvPoint( pt.x + r, pt.y + r ), color, 1, line_type, shift );
cvLine( image, cvPoint( pt.x - r, pt.y + r),
cvPoint( pt.x + r, pt.y - r), color, 1, line_type, shift );
cvCircle( image, pt, r+(1<<shift), color, 1, line_type, shift );
}
}
else
{
int x, y;
CvPoint prev_pt = {0, 0};
const int line_max = 7;
static const CvScalar line_colors[line_max] =
{
{{0,0,255}},
{{0,128,255}},
{{0,200,200}},
{{0,255,0}},
{{200,200,0}},
{{255,0,0}},
{{255,0,255}}
};
for( y = 0, i = 0; y < pattern_size.height; y++ )
{
CvScalar color = line_colors[y % line_max];
if( cn == 1 )
color = cvScalarAll(200);
color.val[0] *= scale;
color.val[1] *= scale;
color.val[2] *= scale;
color.val[3] *= scale;
for( x = 0; x < pattern_size.width; x++, i++ )
{
CvPoint pt;
pt.x = cvRound(corners[i].x*(1 << shift));
pt.y = cvRound(corners[i].y*(1 << shift));
if( i != 0 )
cvLine( image, prev_pt, pt, color, 1, line_type, shift );
cvLine( image, cvPoint(pt.x - r, pt.y - r),
cvPoint(pt.x + r, pt.y + r), color, 1, line_type, shift );
cvLine( image, cvPoint(pt.x - r, pt.y + r),
cvPoint(pt.x + r, pt.y - r), color, 1, line_type, shift );
cvCircle( image, pt, r+(1<<shift), color, 1, line_type, shift );
prev_pt = pt;
}
}
}
__END__;
}
/* End of file. */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -