📄 cvcalibration.cpp
字号:
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "_cv.h"
/*
This is stright forward port v2 of Matlab calibration engine by Jean-Yves Bouguet
that is (in a large extent) based on the paper:
Z. Zhang. "A flexible new technique for camera calibration".
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000.
The 1st initial port was done by Valery Mosyagin.
*/
static void
icvGaussNewton( const CvMat* J, const CvMat* err, CvMat* delta,
CvMat* JtJ=0, CvMat* JtErr=0, CvMat* JtJW=0, CvMat* JtJV=0 )
{
CvMat* _temp_JtJ = 0;
CvMat* _temp_JtErr = 0;
CvMat* _temp_JtJW = 0;
CvMat* _temp_JtJV = 0;
CV_FUNCNAME( "icvGaussNewton" );
__BEGIN__;
if( !CV_IS_MAT(J) || !CV_IS_MAT(err) || !CV_IS_MAT(delta) )
CV_ERROR( CV_StsBadArg, "Some of required arguments is not a valid matrix" );
if( !JtJ )
{
CV_CALL( _temp_JtJ = cvCreateMat( J->cols, J->cols, J->type ));
JtJ = _temp_JtJ;
}
else if( !CV_IS_MAT(JtJ) )
CV_ERROR( CV_StsBadArg, "JtJ is not a valid matrix" );
if( !JtErr )
{
CV_CALL( _temp_JtErr = cvCreateMat( J->cols, 1, J->type ));
JtErr = _temp_JtErr;
}
else if( !CV_IS_MAT(JtErr) )
CV_ERROR( CV_StsBadArg, "JtErr is not a valid matrix" );
if( !JtJW )
{
CV_CALL( _temp_JtJW = cvCreateMat( J->cols, 1, J->type ));
JtJW = _temp_JtJW;
}
else if( !CV_IS_MAT(JtJW) )
CV_ERROR( CV_StsBadArg, "JtJW is not a valid matrix" );
if( !JtJV )
{
CV_CALL( _temp_JtJV = cvCreateMat( J->cols, J->cols, J->type ));
JtJV = _temp_JtJV;
}
else if( !CV_IS_MAT(JtJV) )
CV_ERROR( CV_StsBadArg, "JtJV is not a valid matrix" );
cvMulTransposed( J, JtJ, 1 );
cvGEMM( J, err, 1, 0, 0, JtErr, CV_GEMM_A_T );
cvSVD( JtJ, JtJW, 0, JtJV, CV_SVD_MODIFY_A + CV_SVD_V_T );
cvSVBkSb( JtJW, JtJV, JtJV, JtErr, delta, CV_SVD_U_T + CV_SVD_V_T );
__END__;
if( _temp_JtJ || _temp_JtErr || _temp_JtJW || _temp_JtJV )
{
cvReleaseMat( &_temp_JtJ );
cvReleaseMat( &_temp_JtErr );
cvReleaseMat( &_temp_JtJW );
cvReleaseMat( &_temp_JtJV );
}
}
/*static double calc_repr_err( const double* object_points, int o_step,
const double* image_points,
const double* h, int count )
{
double err = 0;
for( int i = 0; i < count; i++ )
{
double X = object_points[i*o_step], Y = object_points[i*o_step + 1];
double x0 = image_points[i*2], y0 = image_points[i*2 + 1];
double d = 1./(h[6]*X + h[7]*Y + h[8]);
double x = (h[0]*X + h[1]*Y + h[2])*d;
double y = (h[3]*X + h[4]*Y + h[5])*d;
err += fabs(x - x0) + fabs(y - y0);
}
return err;
}*/
// finds perspective transformation H between the object plane and image plane,
// so that (sxi,syi,s) ~ H*(Xi,Yi,1)
CV_IMPL void
cvFindHomography( const CvMat* object_points, const CvMat* image_points, CvMat* __H )
{
CvMat *_m = 0, *_M = 0;
CvMat *_L = 0;
CV_FUNCNAME( "cvFindHomography" );
__BEGIN__;
int h_type;
int i, k, count, count2;
CvPoint2D64f *m, *M;
CvPoint2D64f cm = {0,0}, sm = {0,0};
double inv_Hnorm[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 1 };
double H[9];
CvMat _inv_Hnorm = cvMat( 3, 3, CV_64FC1, inv_Hnorm );
CvMat _H = cvMat( 3, 3, CV_64FC1, H );
double LtL[9*9], LW[9], LV[9*9];
CvMat* _Lp;
double* L;
CvMat _LtL = cvMat( 9, 9, CV_64FC1, LtL );
CvMat _LW = cvMat( 9, 1, CV_64FC1, LW );
CvMat _LV = cvMat( 9, 9, CV_64FC1, LV );
CvMat _Hrem = cvMat( 3, 3, CV_64FC1, LV + 8*9 );
if( !CV_IS_MAT(image_points) || !CV_IS_MAT(object_points) || !CV_IS_MAT(__H) )
CV_ERROR( CV_StsBadArg, "one of arguments is not a valid matrix" );
h_type = CV_MAT_TYPE(__H->type);
if( h_type != CV_32FC1 && h_type != CV_64FC1 )
CV_ERROR( CV_StsUnsupportedFormat, "Homography matrix must have 32fC1 or 64fC1 type" );
if( __H->rows != 3 || __H->cols != 3 )
CV_ERROR( CV_StsBadSize, "Homography matrix must be 3x3" );
count = MAX(image_points->cols, image_points->rows);
count2 = MAX(object_points->cols, object_points->rows);
if( count != count2 )
CV_ERROR( CV_StsUnmatchedSizes, "Numbers of image and object points do not match" );
CV_CALL( _m = cvCreateMat( 1, count, CV_64FC2 ));
CV_CALL( cvConvertPointsHomogenious( image_points, _m ));
m = (CvPoint2D64f*)_m->data.ptr;
CV_CALL( _M = cvCreateMat( 1, count, CV_64FC2 ));
CV_CALL( cvConvertPointsHomogenious( object_points, _M ));
M = (CvPoint2D64f*)_M->data.ptr;
// calculate the normalization transformation Hnorm.
for( i = 0; i < count; i++ )
cm.x += m[i].x, cm.y += m[i].y;
cm.x /= count; cm.y /= count;
for( i = 0; i < count; i++ )
{
double x = m[i].x - cm.x;
double y = m[i].y - cm.y;
sm.x += fabs(x); sm.y += fabs(y);
}
sm.x /= count; sm.y /= count;
inv_Hnorm[0] = sm.x;
inv_Hnorm[4] = sm.y;
inv_Hnorm[2] = cm.x;
inv_Hnorm[5] = cm.y;
sm.x = 1./sm.x;
sm.y = 1./sm.y;
CV_CALL( _Lp = _L = cvCreateMat( 2*count, 9, CV_64FC1 ) );
L = _L->data.db;
for( i = 0; i < count; i++, L += 18 )
{
double x = -(m[i].x - cm.x)*sm.x, y = -(m[i].y - cm.y)*sm.y;
L[0] = L[9 + 3] = M[i].x;
L[1] = L[9 + 4] = M[i].y;
L[2] = L[9 + 5] = 1;
L[9 + 0] = L[9 + 1] = L[9 + 2] = L[3] = L[4] = L[5] = 0;
L[6] = x*M[i].x;
L[7] = x*M[i].y;
L[8] = x;
L[9 + 6] = y*M[i].x;
L[9 + 7] = y*M[i].y;
L[9 + 8] = y;
}
if( count > 4 )
{
cvMulTransposed( _L, &_LtL, 1 );
_Lp = &_LtL;
}
_LW.rows = MIN(count*2, 9);
cvSVD( _Lp, &_LW, 0, &_LV, CV_SVD_MODIFY_A + CV_SVD_V_T );
cvScale( &_Hrem, &_Hrem, 1./_Hrem.data.db[8] );
cvMatMul( &_inv_Hnorm, &_Hrem, &_H );
if( count > 4 )
{
// reuse the available storage for jacobian and other vars
CvMat _J = cvMat( 2*count, 8, CV_64FC1, _L->data.db );
CvMat _err = cvMat( 2*count, 1, CV_64FC1, _L->data.db + 2*count*8 );
CvMat _JtJ = cvMat( 8, 8, CV_64FC1, LtL );
CvMat _JtErr = cvMat( 8, 1, CV_64FC1, LtL + 8*8 );
CvMat _JtJW = cvMat( 8, 1, CV_64FC1, LW );
CvMat _JtJV = cvMat( 8, 8, CV_64FC1, LV );
CvMat _Hinnov = cvMat( 8, 1, CV_64FC1, LV + 8*8 );
for( k = 0; k < 10; k++ )
{
double* J = _J.data.db, *err = _err.data.db;
for( i = 0; i < count; i++, J += 16, err += 2 )
{
double di = 1./(H[6]*M[i].x + H[7]*M[i].y + 1.);
double _xi = (H[0]*M[i].x + H[1]*M[i].y + H[2])*di;
double _yi = (H[3]*M[i].x + H[4]*M[i].y + H[5])*di;
err[0] = m[i].x - _xi;
err[1] = m[i].y - _yi;
J[0] = M[i].x*di;
J[1] = M[i].y*di;
J[2] = di;
J[8+3] = M[i].x;
J[8+4] = M[i].y;
J[8+5] = di;
J[6] = -J[0]*_xi;
J[7] = -J[1]*_xi;
J[8+6] = -J[8+3]*_yi;
J[8+7] = -J[8+4]*_yi;
J[3] = J[4] = J[5] = J[8+0] = J[8+1] = J[8+2] = 0.;
}
icvGaussNewton( &_J, &_err, &_Hinnov, &_JtJ, &_JtErr, &_JtJW, &_JtJV );
for( i = 0; i < 8; i++ )
H[i] += _Hinnov.data.db[i];
}
}
cvConvert( &_H, __H );
__END__;
cvReleaseMat( &_m );
cvReleaseMat( &_M );
cvReleaseMat( &_L );
}
CV_IMPL int
cvRodrigues2( const CvMat* src, CvMat* dst, CvMat* jacobian )
{
int result = 0;
CV_FUNCNAME( "cvRogrigues2" );
__BEGIN__;
int depth, elem_size;
int i, k;
double J[27];
CvMat _J = cvMat( 3, 9, CV_64F, J );
if( !CV_IS_MAT(src) )
CV_ERROR( !src ? CV_StsNullPtr : CV_StsBadArg, "Input argument is not a valid matrix" );
if( !CV_IS_MAT(dst) )
CV_ERROR( !dst ? CV_StsNullPtr : CV_StsBadArg,
"The first output argument is not a valid matrix" );
depth = CV_MAT_DEPTH(src->type);
elem_size = CV_ELEM_SIZE(depth);
if( depth != CV_32F && depth != CV_64F )
CV_ERROR( CV_StsUnsupportedFormat, "The matrices must have 32f or 64f data type" );
if( !CV_ARE_DEPTHS_EQ(src, dst) )
CV_ERROR( CV_StsUnmatchedFormats, "All the matrices must have the same data type" );
if( jacobian )
{
if( !CV_IS_MAT(jacobian) )
CV_ERROR( CV_StsBadArg, "Jacobian is not a valid matrix" );
if( !CV_ARE_DEPTHS_EQ(src, jacobian) || CV_MAT_CN(jacobian->type) != 1 )
CV_ERROR( CV_StsUnmatchedFormats, "Jacobian must have 32fC1 or 64fC1 datatype" );
if( (jacobian->rows != 9 || jacobian->cols != 3) &&
(jacobian->rows != 3 || jacobian->cols != 9))
CV_ERROR( CV_StsBadSize, "Jacobian must be 3x9 or 9x3" );
}
if( src->cols == 1 || src->rows == 1 )
{
double rx, ry, rz, theta;
int step = src->rows > 1 ? src->step / elem_size : 1;
if( src->rows + src->cols*CV_MAT_CN(src->type) - 1 != 3 )
CV_ERROR( CV_StsBadSize, "Input matrix must be 1x3, 3x1 or 3x3" );
if( dst->rows != 3 || dst->cols != 3 || CV_MAT_CN(dst->type) != 1 )
CV_ERROR( CV_StsBadSize, "Output matrix must be 3x3, single-channel floating point matrix" );
if( depth == CV_32F )
{
rx = src->data.fl[0];
ry = src->data.fl[step];
rz = src->data.fl[step*2];
}
else
{
rx = src->data.db[0];
ry = src->data.db[step];
rz = src->data.db[step*2];
}
theta = sqrt(rx*rx + ry*ry + rz*rz);
if( theta < DBL_EPSILON )
{
cvSetIdentity( dst );
if( jacobian )
{
memset( J, 0, sizeof(J) );
J[5] = J[15] = J[19] = -1;
J[7] = J[11] = J[21] = 1;
}
}
else
{
const double I[] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 };
double c = cos(theta);
double s = sin(theta);
double c1 = 1. - c;
double itheta = theta ? 1./theta : 0.;
rx *= itheta; ry *= itheta; rz *= itheta;
double rrt[] = { rx*rx, rx*ry, rx*rz, rx*ry, ry*ry, ry*rz, rx*rz, ry*rz, rz*rz };
double _r_x_[] = { 0, -rz, ry, rz, 0, -rx, -ry, rx, 0 };
double R[9];
CvMat _R = cvMat( 3, 3, CV_64F, R );
// R = cos(theta)*I + (1 - cos(theta))*r*rT + sin(theta)*[r_x]
// where [r_x] is [0 -rz ry; rz 0 -rx; -ry rx 0]
for( k = 0; k < 9; k++ )
R[k] = c*I[k] + c1*rrt[k] + s*_r_x_[k];
cvConvert( &_R, dst );
if( jacobian )
{
double drrt[] = { rx+rx, ry, rz, ry, 0, 0, rz, 0, 0,
0, rx, 0, rx, ry+ry, rz, 0, rz, 0,
0, 0, rx, 0, 0, ry, rx, ry, rz+rz };
double d_r_x_[] = { 0, 0, 0, 0, 0, -1, 0, 1, 0,
0, 0, 1, 0, 0, 0, -1, 0, 0,
0, -1, 0, 1, 0, 0, 0, 0, 0 };
for( i = 0; i < 3; i++ )
{
double ri = i == 0 ? rx : i == 1 ? ry : rz;
double a0 = -s*ri, a1 = (s - 2*c1*itheta)*ri, a2 = c1*itheta;
double a3 = (c - s*itheta)*ri, a4 = s*itheta;
for( k = 0; k < 9; k++ )
J[i*9+k] = a0*I[k] + a1*rrt[k] + a2*drrt[i*9+k] +
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -