📄 cvsmooth.cpp
字号:
#define UPDATE_OUTPUT_C3\
mean0 = 1./mean0;\
dst[i*3 + 0] = (uchar)cvRound(mean1[0]*mean0); \
dst[i*3 + 1] = (uchar)cvRound(mean1[1]*mean0); \
dst[i*3 + 2] = (uchar)cvRound(mean1[2]*mean0);
CV_INIT_3X3_DELTAS( deltas, srcStep, channels );
weight_tab[0] = weight_tab[2] = weight_tab[4] = weight_tab[6] = i2sigma_space;
weight_tab[1] = weight_tab[3] = weight_tab[5] = weight_tab[7] = i2sigma_space*2;
if( channels == 1 )
{
int color, temp_color;
for( i = 0; i < size.width; i++, src++ )
{
INIT_C1;
KERNEL_ELEMENT_C1(6);
if( i > 0 )
{
KERNEL_ELEMENT_C1(5);
KERNEL_ELEMENT_C1(4);
}
if( i < size.width - 1 )
{
KERNEL_ELEMENT_C1(7);
KERNEL_ELEMENT_C1(0);
}
UPDATE_OUTPUT_C1;
}
src += srcStep - size.width;
dst += dstStep;
for( j = 1; j < size.height - 1; j++, dst += dstStep )
{
i = 0;
INIT_C1;
KERNEL_ELEMENT_C1(0);
KERNEL_ELEMENT_C1(1);
KERNEL_ELEMENT_C1(2);
KERNEL_ELEMENT_C1(6);
KERNEL_ELEMENT_C1(7);
UPDATE_OUTPUT_C1;
for( i = 1, src++; i < size.width - 1; i++, src++ )
{
INIT_C1;
KERNEL_ELEMENT_C1(0);
KERNEL_ELEMENT_C1(1);
KERNEL_ELEMENT_C1(2);
KERNEL_ELEMENT_C1(3);
KERNEL_ELEMENT_C1(4);
KERNEL_ELEMENT_C1(5);
KERNEL_ELEMENT_C1(6);
KERNEL_ELEMENT_C1(7);
UPDATE_OUTPUT_C1;
}
INIT_C1;
KERNEL_ELEMENT_C1(2);
KERNEL_ELEMENT_C1(3);
KERNEL_ELEMENT_C1(4);
KERNEL_ELEMENT_C1(5);
KERNEL_ELEMENT_C1(6);
UPDATE_OUTPUT_C1;
src += srcStep + 1 - size.width;
}
for( i = 0; i < size.width; i++, src++ )
{
INIT_C1;
KERNEL_ELEMENT_C1(2);
if( i > 0 )
{
KERNEL_ELEMENT_C1(3);
KERNEL_ELEMENT_C1(4);
}
if( i < size.width - 1 )
{
KERNEL_ELEMENT_C1(1);
KERNEL_ELEMENT_C1(0);
}
UPDATE_OUTPUT_C1;
}
}
else
{
uchar* temp_color;
if( channels != 3 )
return CV_UNSUPPORTED_CHANNELS_ERR;
for( i = 0; i < size.width; i++, src += 3 )
{
INIT_C3;
KERNEL_ELEMENT_C3(6);
if( i > 0 )
{
KERNEL_ELEMENT_C3(5);
KERNEL_ELEMENT_C3(4);
}
if( i < size.width - 1 )
{
KERNEL_ELEMENT_C3(7);
KERNEL_ELEMENT_C3(0);
}
UPDATE_OUTPUT_C3;
}
src += srcStep - size.width*3;
dst += dstStep;
for( j = 1; j < size.height - 1; j++, dst += dstStep )
{
i = 0;
INIT_C3;
KERNEL_ELEMENT_C3(0);
KERNEL_ELEMENT_C3(1);
KERNEL_ELEMENT_C3(2);
KERNEL_ELEMENT_C3(6);
KERNEL_ELEMENT_C3(7);
UPDATE_OUTPUT_C3;
for( i = 1, src += 3; i < size.width - 1; i++, src += 3 )
{
INIT_C3;
KERNEL_ELEMENT_C3(0);
KERNEL_ELEMENT_C3(1);
KERNEL_ELEMENT_C3(2);
KERNEL_ELEMENT_C3(3);
KERNEL_ELEMENT_C3(4);
KERNEL_ELEMENT_C3(5);
KERNEL_ELEMENT_C3(6);
KERNEL_ELEMENT_C3(7);
UPDATE_OUTPUT_C3;
}
INIT_C3;
KERNEL_ELEMENT_C3(2);
KERNEL_ELEMENT_C3(3);
KERNEL_ELEMENT_C3(4);
KERNEL_ELEMENT_C3(5);
KERNEL_ELEMENT_C3(6);
UPDATE_OUTPUT_C3;
src += srcStep + 3 - size.width*3;
}
for( i = 0; i < size.width; i++, src += 3 )
{
INIT_C3;
KERNEL_ELEMENT_C3(2);
if( i > 0 )
{
KERNEL_ELEMENT_C3(3);
KERNEL_ELEMENT_C3(4);
}
if( i < size.width - 1 )
{
KERNEL_ELEMENT_C3(1);
KERNEL_ELEMENT_C3(0);
}
UPDATE_OUTPUT_C3;
}
}
return CV_OK;
#undef INIT_C1
#undef KERNEL_ELEMENT_C1
#undef UPDATE_OUTPUT_C1
#undef INIT_C3
#undef KERNEL_ELEMENT_C3
#undef UPDATE_OUTPUT_C3
#undef COLOR_DISTANCE_C3
}
//////////////////////////////// IPP smoothing functions /////////////////////////////////
icvFilterMedian_8u_C1R_t icvFilterMedian_8u_C1R_p = 0;
icvFilterMedian_8u_C3R_t icvFilterMedian_8u_C3R_p = 0;
icvFilterMedian_8u_C4R_t icvFilterMedian_8u_C4R_p = 0;
icvFilterBox_8u_C1R_t icvFilterBox_8u_C1R_p = 0;
icvFilterBox_8u_C3R_t icvFilterBox_8u_C3R_p = 0;
icvFilterBox_8u_C4R_t icvFilterBox_8u_C4R_p = 0;
icvFilterBox_32f_C1R_t icvFilterBox_32f_C1R_p = 0;
icvFilterBox_32f_C3R_t icvFilterBox_32f_C3R_p = 0;
icvFilterBox_32f_C4R_t icvFilterBox_32f_C4R_p = 0;
typedef CvStatus (CV_STDCALL * CvSmoothFixedIPPFunc)
( const void* src, int srcstep, void* dst, int dststep,
CvSize size, CvSize ksize, CvPoint anchor );
//////////////////////////////////////////////////////////////////////////////////////////
CV_IMPL void
cvSmooth( const void* srcarr, void* dstarr, int smooth_type,
int param1, int param2, double param3, double param4 )
{
CvBoxFilter box_filter;
CvSepFilter gaussian_filter;
CvMat* temp = 0;
CV_FUNCNAME( "cvSmooth" );
__BEGIN__;
int coi1 = 0, coi2 = 0;
CvMat srcstub, *src = (CvMat*)srcarr;
CvMat dststub, *dst = (CvMat*)dstarr;
CvSize size;
int src_type, dst_type, depth, cn;
double sigma1 = 0, sigma2 = 0;
bool have_ipp = icvFilterMedian_8u_C1R_p != 0;
CV_CALL( src = cvGetMat( src, &srcstub, &coi1 ));
CV_CALL( dst = cvGetMat( dst, &dststub, &coi2 ));
if( coi1 != 0 || coi2 != 0 )
CV_ERROR( CV_BadCOI, "" );
src_type = CV_MAT_TYPE( src->type );
dst_type = CV_MAT_TYPE( dst->type );
depth = CV_MAT_DEPTH(src_type);
cn = CV_MAT_CN(src_type);
size = cvGetMatSize(src);
if( !CV_ARE_SIZES_EQ( src, dst ))
CV_ERROR( CV_StsUnmatchedSizes, "" );
if( smooth_type != CV_BLUR_NO_SCALE && !CV_ARE_TYPES_EQ( src, dst ))
CV_ERROR( CV_StsUnmatchedFormats,
"The specified smoothing algorithm requires input and ouput arrays be of the same type" );
if( smooth_type == CV_BLUR || smooth_type == CV_BLUR_NO_SCALE ||
smooth_type == CV_GAUSSIAN || smooth_type == CV_MEDIAN )
{
// automatic detection of kernel size from sigma
if( smooth_type == CV_GAUSSIAN )
{
sigma1 = param3;
sigma2 = param4 ? param4 : param3;
if( param1 == 0 && sigma1 > 0 )
param1 = cvRound(sigma1*(depth == CV_8U ? 3 : 4)*2 + 1)|1;
if( param2 == 0 && sigma2 > 0 )
param2 = cvRound(sigma2*(depth == CV_8U ? 3 : 4)*2 + 1)|1;
}
if( param2 == 0 )
param2 = size.height == 1 ? 1 : param1;
if( param1 < 1 || (param1 & 1) == 0 || param2 < 1 || (param2 & 1) == 0 )
CV_ERROR( CV_StsOutOfRange,
"Both mask width and height must be >=1 and odd" );
if( param1 == 1 && param2 == 1 )
{
cvConvert( src, dst );
EXIT;
}
}
if( have_ipp && (smooth_type == CV_BLUR || smooth_type == CV_MEDIAN) &&
size.width >= param1 && size.height >= param2 && param1 > 1 && param2 > 1 )
{
CvSmoothFixedIPPFunc ipp_median_box_func = 0;
if( smooth_type == CV_BLUR )
{
ipp_median_box_func =
src_type == CV_8UC1 ? icvFilterBox_8u_C1R_p :
src_type == CV_8UC3 ? icvFilterBox_8u_C3R_p :
src_type == CV_8UC4 ? icvFilterBox_8u_C4R_p :
src_type == CV_32FC1 ? icvFilterBox_32f_C1R_p :
src_type == CV_32FC3 ? icvFilterBox_32f_C3R_p :
src_type == CV_32FC4 ? icvFilterBox_32f_C4R_p : 0;
}
else if( smooth_type == CV_MEDIAN )
{
ipp_median_box_func =
src_type == CV_8UC1 ? icvFilterMedian_8u_C1R_p :
src_type == CV_8UC3 ? icvFilterMedian_8u_C3R_p :
src_type == CV_8UC4 ? icvFilterMedian_8u_C4R_p : 0;
}
if( ipp_median_box_func )
{
CvSize el_size = { param1, param2 };
CvPoint el_anchor = { param1/2, param2/2 };
int stripe_size = 1 << 14; // the optimal value may depend on CPU cache,
// overhead of the current IPP code etc.
const uchar* shifted_ptr;
int y, dy = 0;
int temp_step, dst_step = dst->step;
CV_CALL( temp = icvIPPFilterInit( src, stripe_size, el_size ));
shifted_ptr = temp->data.ptr +
el_anchor.y*temp->step + el_anchor.x*CV_ELEM_SIZE(src_type);
temp_step = temp->step ? temp->step : CV_STUB_STEP;
for( y = 0; y < src->rows; y += dy )
{
dy = icvIPPFilterNextStripe( src, temp, y, el_size, el_anchor );
IPPI_CALL( ipp_median_box_func( shifted_ptr, temp_step,
dst->data.ptr + y*dst_step, dst_step, cvSize(src->cols, dy),
el_size, el_anchor ));
}
EXIT;
}
}
if( smooth_type == CV_BLUR || smooth_type == CV_BLUR_NO_SCALE )
{
CV_CALL( box_filter.init( src->cols, src_type, dst_type,
smooth_type == CV_BLUR, cvSize(param1, param2) ));
CV_CALL( box_filter.process( src, dst ));
}
else if( smooth_type == CV_MEDIAN )
{
if( depth != CV_8U || cn != 1 && cn != 3 && cn != 4 )
CV_ERROR( CV_StsUnsupportedFormat,
"Median filter only supports 8uC1, 8uC3 and 8uC4 images" );
IPPI_CALL( icvMedianBlur_8u_CnR( src->data.ptr, src->step,
dst->data.ptr, dst->step, size, param1, cn ));
}
else if( smooth_type == CV_GAUSSIAN )
{
CvSize ksize = { param1, param2 };
float* kx = (float*)cvStackAlloc( ksize.width*sizeof(kx[0]) );
float* ky = (float*)cvStackAlloc( ksize.height*sizeof(ky[0]) );
CvMat KX = cvMat( 1, ksize.width, CV_32F, kx );
CvMat KY = cvMat( 1, ksize.height, CV_32F, ky );
CvSepFilter::init_gaussian_kernel( &KX, sigma1 );
if( ksize.width != ksize.height || fabs(sigma1 - sigma2) > FLT_EPSILON )
CvSepFilter::init_gaussian_kernel( &KY, sigma2 );
else
KY.data.fl = kx;
if( have_ipp && size.width >= param1*3 &&
size.height >= param2 && param1 > 1 && param2 > 1 )
{
int done;
CV_CALL( done = icvIPPSepFilter( src, dst, &KX, &KY,
cvPoint(ksize.width/2,ksize.height/2)));
if( done )
EXIT;
}
CV_CALL( gaussian_filter.init( src->cols, src_type, dst_type, &KX, &KY ));
CV_CALL( gaussian_filter.process( src, dst ));
}
else if( smooth_type == CV_BILATERAL )
{
if( param1 < 0 || param2 < 0 )
CV_ERROR( CV_StsOutOfRange,
"Thresholds in bilaral filtering should not bee negative" );
param1 += param1 == 0;
param2 += param2 == 0;
if( depth != CV_8U || cn != 1 && cn != 3 )
CV_ERROR( CV_StsUnsupportedFormat,
"Bilateral filter only supports 8uC1 and 8uC3 images" );
IPPI_CALL( icvBilateralFiltering_8u_CnR( src->data.ptr, src->step,
dst->data.ptr, dst->step, size, param1, param2, cn ));
}
__END__;
cvReleaseMat( &temp );
}
/* End of file. */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -