⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bitops.h

📁 讲述linux的初始化过程
💻 H
字号:
/* $Id: bitops.h,v 1.61 2000/09/23 02:11:22 davem Exp $ * bitops.h: Bit string operations on the Sparc. * * Copyright 1995 David S. Miller (davem@caip.rutgers.edu) * Copyright 1996 Eddie C. Dost   (ecd@skynet.be) */#ifndef _SPARC_BITOPS_H#define _SPARC_BITOPS_H#include <linux/kernel.h>#include <asm/byteorder.h>#ifndef __KERNEL__/* User mode bitops, defined here for convenience. Note: these are not * atomic, so packages like nthreads should do some locking around these * themself. */extern __inline__ unsigned long set_bit(unsigned long nr, void *addr){	int mask;	unsigned long *ADDR = (unsigned long *) addr;	ADDR += nr >> 5;	mask = 1 << (nr & 31);	__asm__ __volatile__("	ld	[%0], %%g3	or	%%g3, %2, %%g2	st	%%g2, [%0]	and	%%g3, %2, %0	"	: "=&r" (ADDR)	: "0" (ADDR), "r" (mask)	: "g2", "g3");	return (unsigned long) ADDR;}extern __inline__ unsigned long clear_bit(unsigned long nr, void *addr){	int mask;	unsigned long *ADDR = (unsigned long *) addr;	ADDR += nr >> 5;	mask = 1 << (nr & 31);	__asm__ __volatile__("	ld	[%0], %%g3	andn	%%g3, %2, %%g2	st	%%g2, [%0]	and	%%g3, %2, %0	"	: "=&r" (ADDR)	: "0" (ADDR), "r" (mask)	: "g2", "g3");	return (unsigned long) ADDR;}extern __inline__ void change_bit(unsigned long nr, void *addr){	int mask;	unsigned long *ADDR = (unsigned long *) addr;	ADDR += nr >> 5;	mask = 1 << (nr & 31);	__asm__ __volatile__("	ld	[%0], %%g3	xor	%%g3, %2, %%g2	st	%%g2, [%0]	and	%%g3, %2, %0	"	: "=&r" (ADDR)	: "0" (ADDR), "r" (mask)	: "g2", "g3");}#else /* __KERNEL__ */#include <asm/system.h>/* Set bit 'nr' in 32-bit quantity at address 'addr' where bit '0' * is in the highest of the four bytes and bit '31' is the high bit * within the first byte. Sparc is BIG-Endian. Unless noted otherwise * all bit-ops return 0 if bit was previously clear and != 0 otherwise. */extern __inline__ int test_and_set_bit(unsigned long nr, volatile void *addr){	register unsigned long mask asm("g2");	register unsigned long *ADDR asm("g1");	ADDR = ((unsigned long *) addr) + (nr >> 5);	mask = 1 << (nr & 31);	__asm__ __volatile__("	mov	%%o7, %%g4	call	___set_bit	 add	%%o7, 8, %%o7"	: "=&r" (mask)	: "0" (mask), "r" (ADDR)	: "g3", "g4", "g5", "g7", "cc");	return mask != 0;}extern __inline__ void set_bit(unsigned long nr, volatile void *addr){	(void) test_and_set_bit(nr, addr);}extern __inline__ int test_and_clear_bit(unsigned long nr, volatile void *addr){	register unsigned long mask asm("g2");	register unsigned long *ADDR asm("g1");	ADDR = ((unsigned long *) addr) + (nr >> 5);	mask = 1 << (nr & 31);	__asm__ __volatile__("	mov	%%o7, %%g4	call	___clear_bit	 add	%%o7, 8, %%o7"	: "=&r" (mask)	: "0" (mask), "r" (ADDR)	: "g3", "g4", "g5", "g7", "cc");	return mask != 0;}extern __inline__ void clear_bit(unsigned long nr, volatile void *addr){	(void) test_and_clear_bit(nr, addr);}extern __inline__ int test_and_change_bit(unsigned long nr, volatile void *addr){	register unsigned long mask asm("g2");	register unsigned long *ADDR asm("g1");	ADDR = ((unsigned long *) addr) + (nr >> 5);	mask = 1 << (nr & 31);	__asm__ __volatile__("	mov	%%o7, %%g4	call	___change_bit	 add	%%o7, 8, %%o7"	: "=&r" (mask)	: "0" (mask), "r" (ADDR)	: "g3", "g4", "g5", "g7", "cc");	return mask != 0;}extern __inline__ void change_bit(unsigned long nr, volatile void *addr){	(void) test_and_change_bit(nr, addr);}#endif /* __KERNEL__ */#define smp_mb__before_clear_bit()	do { } while(0)#define smp_mb__after_clear_bit()	do { } while(0)/* The following routine need not be atomic. */extern __inline__ int test_bit(int nr, __const__ void *addr){	return (1 & (((__const__ unsigned int *) addr)[nr >> 5] >> (nr & 31))) != 0;}/* The easy/cheese version for now. */extern __inline__ unsigned long ffz(unsigned long word){	unsigned long result = 0;	while(word & 1) {		result++;		word >>= 1;	}	return result;}#ifdef __KERNEL__/* * ffs: find first bit set. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */#define ffs(x) generic_ffs(x)/* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */#define hweight32(x) generic_hweight32(x)#define hweight16(x) generic_hweight16(x)#define hweight8(x) generic_hweight8(x)#endif /* __KERNEL__ *//* find_next_zero_bit() finds the first zero bit in a bit string of length * 'size' bits, starting the search at bit 'offset'. This is largely based * on Linus's ALPHA routines, which are pretty portable BTW. */extern __inline__ unsigned long find_next_zero_bit(void *addr, unsigned long size, unsigned long offset){	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);	unsigned long result = offset & ~31UL;	unsigned long tmp;	if (offset >= size)		return size;	size -= result;	offset &= 31UL;	if (offset) {		tmp = *(p++);		tmp |= ~0UL >> (32-offset);		if (size < 32)			goto found_first;		if (~tmp)			goto found_middle;		size -= 32;		result += 32;	}	while (size & ~31UL) {		if (~(tmp = *(p++)))			goto found_middle;		result += 32;		size -= 32;	}	if (!size)		return result;	tmp = *p;found_first:	tmp |= ~0UL << size;	if (tmp == ~0UL)        /* Are any bits zero? */		return result + size; /* Nope. */found_middle:	return result + ffz(tmp);}/* Linus sez that gcc can optimize the following correctly, we'll see if this * holds on the Sparc as it does for the ALPHA. */#define find_first_zero_bit(addr, size) \        find_next_zero_bit((addr), (size), 0)#ifndef __KERNEL__extern __inline__ int set_le_bit(int nr, void *addr){	int		mask;	unsigned char	*ADDR = (unsigned char *) addr;	ADDR += nr >> 3;	mask = 1 << (nr & 0x07);	__asm__ __volatile__("	ldub	[%0], %%g3	or	%%g3, %2, %%g2	stb	%%g2, [%0]	and	%%g3, %2, %0	"	: "=&r" (ADDR)	: "0" (ADDR), "r" (mask)	: "g2", "g3");	return (int) ADDR;}extern __inline__ int clear_le_bit(int nr, void *addr){	int		mask;	unsigned char	*ADDR = (unsigned char *) addr;	ADDR += nr >> 3;	mask = 1 << (nr & 0x07);	__asm__ __volatile__("	ldub	[%0], %%g3	andn	%%g3, %2, %%g2	stb	%%g2, [%0]	and	%%g3, %2, %0	"	: "=&r" (ADDR)	: "0" (ADDR), "r" (mask)	: "g2", "g3");	return (int) ADDR;}#else /* __KERNEL__ *//* Now for the ext2 filesystem bit operations and helper routines. */extern __inline__ int set_le_bit(int nr, volatile void * addr){	register int mask asm("g2");	register unsigned char *ADDR asm("g1");	ADDR = ((unsigned char *) addr) + (nr >> 3);	mask = 1 << (nr & 0x07);	__asm__ __volatile__("	mov	%%o7, %%g4	call	___set_le_bit	 add	%%o7, 8, %%o7"	: "=&r" (mask)	: "0" (mask), "r" (ADDR)	: "g3", "g4", "g5", "g7", "cc");	return mask;}extern __inline__ int clear_le_bit(int nr, volatile void * addr){	register int mask asm("g2");	register unsigned char *ADDR asm("g1");	ADDR = ((unsigned char *) addr) + (nr >> 3);	mask = 1 << (nr & 0x07);	__asm__ __volatile__("	mov	%%o7, %%g4	call	___clear_le_bit	 add	%%o7, 8, %%o7"	: "=&r" (mask)	: "0" (mask), "r" (ADDR)	: "g3", "g4", "g5", "g7", "cc");	return mask;}#endif /* __KERNEL__ */extern __inline__ int test_le_bit(int nr, __const__ void * addr){	int			mask;	__const__ unsigned char	*ADDR = (__const__ unsigned char *) addr;	ADDR += nr >> 3;	mask = 1 << (nr & 0x07);	return ((mask & *ADDR) != 0);}#ifdef __KERNEL__#define ext2_set_bit   set_le_bit#define ext2_clear_bit clear_le_bit#define ext2_test_bit  test_le_bit#endif /* __KERNEL__ */#define find_first_zero_le_bit(addr, size) \        find_next_zero_le_bit((addr), (size), 0)extern __inline__ unsigned long find_next_zero_le_bit(void *addr, unsigned long size, unsigned long offset){	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);	unsigned long result = offset & ~31UL;	unsigned long tmp;	if (offset >= size)		return size;	size -= result;	offset &= 31UL;	if(offset) {		tmp = *(p++);		tmp |= __swab32(~0UL >> (32-offset));		if(size < 32)			goto found_first;		if(~tmp)			goto found_middle;		size -= 32;		result += 32;	}	while(size & ~31UL) {		if(~(tmp = *(p++)))			goto found_middle;		result += 32;		size -= 32;	}	if(!size)		return result;	tmp = *p;found_first:	tmp = __swab32(tmp) | (~0UL << size);	if (tmp == ~0UL)        /* Are any bits zero? */		return result + size; /* Nope. */	return result + ffz(tmp);found_middle:	return result + ffz(__swab32(tmp));}#ifdef __KERNEL__#define ext2_find_first_zero_bit     find_first_zero_le_bit#define ext2_find_next_zero_bit      find_next_zero_le_bit/* Bitmap functions for the minix filesystem.  */#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)#define minix_set_bit(nr,addr) set_bit(nr,addr)#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)#define minix_test_bit(nr,addr) test_bit(nr,addr)#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)#endif /* __KERNEL__ */#endif /* defined(_SPARC_BITOPS_H) */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -