⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 isa-skeleton.c

📁 讲述linux的初始化过程
💻 C
📖 第 1 页 / 共 2 页
字号:
	 * Always allocate the DMA channel after the IRQ,	 * and clean up on failure.	 */	if (request_dma(dev->dma, cardname)) {		free_irq(dev->irq, dev);		return -EAGAIN;	}	/* Reset the hardware here. Don't forget to set the station address. */	chipset_init(dev, 1);	outb(0x00, ioaddr);	np->open_time = jiffies;	/* We are now ready to accept transmit requeusts from	 * the queueing layer of the networking.	 */	netif_start_queue(dev);	return 0;}/* This will only be invoked if your driver is _not_ in XOFF state. * What this means is that you need not check it, and that this * invariant will hold if you make sure that the netif_*_queue() * calls are done at the proper times. */static int net_send_packet(struct sk_buff *skb, struct net_device *dev){	struct net_local *np = (struct net_local *)dev->priv;	int ioaddr = dev->base_addr;	short length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN;	unsigned char *buf = skb->data;	/* If some error occurs while trying to transmit this	 * packet, you should return '1' from this function.	 * In such a case you _may not_ do anything to the	 * SKB, it is still owned by the network queueing	 * layer when an error is returned.  This means you	 * may not modify any SKB fields, you may not free	 * the SKB, etc.	 */#if TX_RING	/* This is the most common case for modern hardware.	 * The spinlock protects this code from the TX complete	 * hardware interrupt handler.  Queue flow control is	 * thus managed under this lock as well.	 */	spin_lock_irq(&np->lock);	add_to_tx_ring(np, skb, length);	dev->trans_start = jiffies;	/* If we just used up the very last entry in the	 * TX ring on this device, tell the queueing	 * layer to send no more.	 */	if (tx_full(dev))		netif_stop_queue(dev);	/* When the TX completion hw interrupt arrives, this	 * is when the transmit statistics are updated.	 */	spin_unlock_irq(&np->lock);#else	/* This is the case for older hardware which takes	 * a single transmit buffer at a time, and it is	 * just written to the device via PIO.	 *	 * No spin locking is needed since there is no TX complete	 * event.  If by chance your card does have a TX complete	 * hardware IRQ then you may need to utilize np->lock here.	 */	hardware_send_packet(ioaddr, buf, length);	np->stats.tx_bytes += skb->len;	dev->trans_start = jiffies;	/* You might need to clean up and record Tx statistics here. */	if (inw(ioaddr) == /*RU*/81)		np->stats.tx_aborted_errors++;	dev_kfree_skb (skb);#endif	return 0;}#if TX_RING/* This handles TX complete events posted by the device * via interrupts. */void net_tx(struct net_device *dev){	struct net_local *np = (struct net_local *)dev->priv;	int entry;	/* This protects us from concurrent execution of	 * our dev->hard_start_xmit function above.	 */	spin_lock(&np->lock);	entry = np->tx_old;	while (tx_entry_is_sent(np, entry)) {		struct sk_buff *skb = np->skbs[entry];		np->stats.tx_bytes += skb->len;		dev_kfree_skb_irq (skb);		entry = next_tx_entry(np, entry);	}	np->tx_old = entry;	/* If we had stopped the queue due to a "tx full"	 * condition, and space has now been made available,	 * wake up the queue.	 */	if (netif_queue_stopped(dev) && ! tx_full(dev))		netif_wake_queue(dev);	spin_unlock(&np->lock);}#endif/* * The typical workload of the driver: * Handle the network interface interrupts. */static void net_interrupt(int irq, void *dev_id, struct pt_regs * regs){	struct net_device *dev = dev_id;	struct net_local *np;	int ioaddr, status;	ioaddr = dev->base_addr;	np = (struct net_local *)dev->priv;	status = inw(ioaddr + 0);	if (status & RX_INTR) {		/* Got a packet(s). */		net_rx(dev);	}#if TX_RING	if (status & TX_INTR) {		/* Transmit complete. */		net_tx(dev);		np->stats.tx_packets++;		netif_wake_queue(dev);	}#endif	if (status & COUNTERS_INTR) {		/* Increment the appropriate 'localstats' field. */		np->stats.tx_window_errors++;	}}/* We have a good packet(s), get it/them out of the buffers. */static voidnet_rx(struct net_device *dev){	struct net_local *lp = (struct net_local *)dev->priv;	int ioaddr = dev->base_addr;	int boguscount = 10;	do {		int status = inw(ioaddr);		int pkt_len = inw(ioaddr);	  		if (pkt_len == 0)		/* Read all the frames? */			break;			/* Done for now */		if (status & 0x40) {	/* There was an error. */			lp->stats.rx_errors++;			if (status & 0x20) lp->stats.rx_frame_errors++;			if (status & 0x10) lp->stats.rx_over_errors++;			if (status & 0x08) lp->stats.rx_crc_errors++;			if (status & 0x04) lp->stats.rx_fifo_errors++;		} else {			/* Malloc up new buffer. */			struct sk_buff *skb;			lp->stats.rx_bytes+=pkt_len;						skb = dev_alloc_skb(pkt_len);			if (skb == NULL) {				printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n",					   dev->name);				lp->stats.rx_dropped++;				break;			}			skb->dev = dev;			/* 'skb->data' points to the start of sk_buff data area. */			memcpy(skb_put(skb,pkt_len), (void*)dev->rmem_start,				   pkt_len);			/* or */			insw(ioaddr, skb->data, (pkt_len + 1) >> 1);			netif_rx(skb);			lp->stats.rx_packets++;		}	} while (--boguscount);	return;}/* The inverse routine to net_open(). */static intnet_close(struct net_device *dev){	struct net_local *lp = (struct net_local *)dev->priv;	int ioaddr = dev->base_addr;	lp->open_time = 0;	netif_stop_queue(dev);	/* Flush the Tx and disable Rx here. */	disable_dma(dev->dma);	/* If not IRQ or DMA jumpered, free up the line. */	outw(0x00, ioaddr+0);	/* Release the physical interrupt line. */	free_irq(dev->irq, dev);	free_dma(dev->dma);	/* Update the statistics here. */	return 0;}/* * Get the current statistics. * This may be called with the card open or closed. */static struct net_device_stats *net_get_stats(struct net_device *dev){	struct net_local *lp = (struct net_local *)dev->priv;	short ioaddr = dev->base_addr;	/* Update the statistics from the device registers. */	lp->stats.rx_missed_errors = inw(ioaddr+1);	return &lp->stats;}/* * Set or clear the multicast filter for this adaptor. * num_addrs == -1	Promiscuous mode, receive all packets * num_addrs == 0	Normal mode, clear multicast list * num_addrs > 0	Multicast mode, receive normal and MC packets, *			and do best-effort filtering. */static voidset_multicast_list(struct net_device *dev){	short ioaddr = dev->base_addr;	if (dev->flags&IFF_PROMISC)	{		/* Enable promiscuous mode */		outw(MULTICAST|PROMISC, ioaddr);	}	else if((dev->flags&IFF_ALLMULTI) || dev->mc_count > HW_MAX_ADDRS)	{		/* Disable promiscuous mode, use normal mode. */		hardware_set_filter(NULL);		outw(MULTICAST, ioaddr);	}	else if(dev->mc_count)	{		/* Walk the address list, and load the filter */		hardware_set_filter(dev->mc_list);		outw(MULTICAST, ioaddr);	}	else 		outw(0, ioaddr);}#ifdef MODULEstatic struct net_device this_device;static int io = 0x300;static int irq;static int dma;static int mem;int init_module(void){	int result;	if (io == 0)		printk(KERN_WARNING "%s: You shouldn't use auto-probing with insmod!\n",			   cardname);	/* Copy the parameters from insmod into the device structure. */	this_device.base_addr = io;	this_device.irq       = irq;	this_device.dma       = dma;	this_device.mem_start = mem;	this_device.init      = netcard_probe;	if ((result = register_netdev(&this_device)) != 0)		return result;	return 0;}voidcleanup_module(void){	/* No need to check MOD_IN_USE, as sys_delete_module() checks. */	unregister_netdev(&this_device);	/*	 * If we don't do this, we can't re-insmod it later.	 * Release irq/dma here, when you have jumpered versions and	 * allocate them in net_probe1().	 */	/*	   free_irq(this_device.irq, dev);	   free_dma(this_device.dma);	*/	release_region(this_device.base_addr, NETCARD_IO_EXTENT);	if (this_device.priv)		kfree(this_device.priv);}#endif /* MODULE *//* * Local variables: *  compile-command: *	gcc -D__KERNEL__ -Wall -Wstrict-prototypes -Wwrite-strings *	-Wredundant-decls -O2 -m486 -c skeleton.c *  version-control: t *  kept-new-versions: 5 *  tab-width: 4 *  c-indent-level: 4 * End: */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -