📄 envctrl.c
字号:
* power supply. */ if (j == 1) ret = ENVCTRL_VOLTAGE_BAD; else ret = ENVCTRL_POWERSUPPLY_BAD; } bufdata[0] = ret; return 1;}/* Function Description: Read a byte from /dev/envctrl. Mapped to user read(). * Return: Number of read bytes. 0 for error. */static ssize_tenvctrl_read(struct file *file, char *buf, size_t count, loff_t *ppos){ struct i2c_child_t *pchild; unsigned char data[10]; int ret = 0; /* Get the type of read as decided in ioctl() call. * Find the appropriate i2c child. * Get the data and put back to the user buffer. */ switch ((int)(long)file->private_data) { case ENVCTRL_RD_WARNING_TEMPERATURE: if (warning_temperature == 0) return 0; data[0] = (unsigned char)(warning_temperature); ret = 1; copy_to_user((unsigned char *)buf, data, ret); break; case ENVCTRL_RD_SHUTDOWN_TEMPERATURE: if (shutdown_temperature == 0) return 0; data[0] = (unsigned char)(shutdown_temperature); ret = 1; copy_to_user((unsigned char *)buf, data, ret); break; case ENVCTRL_RD_MTHRBD_TEMPERATURE: if (!(pchild = envctrl_get_i2c_child(ENVCTRL_MTHRBDTEMP_MON))) return 0; ret = envctrl_read_noncpu_info(pchild, ENVCTRL_MTHRBDTEMP_MON, data); copy_to_user((unsigned char *)buf, data, ret); break; case ENVCTRL_RD_CPU_TEMPERATURE: if (!(pchild = envctrl_get_i2c_child(ENVCTRL_CPUTEMP_MON))) return 0; ret = envctrl_read_cpu_info(pchild, ENVCTRL_CPUTEMP_MON, data); /* Reset cpu to the default cpu0. */ copy_to_user((unsigned char *)buf, data, ret); break; case ENVCTRL_RD_CPU_VOLTAGE: if (!(pchild = envctrl_get_i2c_child(ENVCTRL_CPUVOLTAGE_MON))) return 0; ret = envctrl_read_cpu_info(pchild, ENVCTRL_CPUVOLTAGE_MON, data); /* Reset cpu to the default cpu0. */ copy_to_user((unsigned char *)buf, data, ret); break; case ENVCTRL_RD_SCSI_TEMPERATURE: if (!(pchild = envctrl_get_i2c_child(ENVCTRL_SCSITEMP_MON))) return 0; ret = envctrl_read_noncpu_info(pchild, ENVCTRL_SCSITEMP_MON, data); copy_to_user((unsigned char *)buf, data, ret); break; case ENVCTRL_RD_ETHERNET_TEMPERATURE: if (!(pchild = envctrl_get_i2c_child(ENVCTRL_ETHERTEMP_MON))) return 0; ret = envctrl_read_noncpu_info(pchild, ENVCTRL_ETHERTEMP_MON, data); copy_to_user((unsigned char *)buf, data, ret); break; case ENVCTRL_RD_FAN_STATUS: if (!(pchild = envctrl_get_i2c_child(ENVCTRL_FANSTAT_MON))) return 0; data[0] = envctrl_i2c_read_8574(pchild->addr); ret = envctrl_i2c_fan_status(pchild,data[0], data); copy_to_user((unsigned char *)buf, data, ret); break; case ENVCTRL_RD_GLOBALADDRESS: if (!(pchild = envctrl_get_i2c_child(ENVCTRL_GLOBALADDR_MON))) return 0; data[0] = envctrl_i2c_read_8574(pchild->addr); ret = envctrl_i2c_globaladdr(pchild, data[0], data); copy_to_user((unsigned char *)buf, data, ret); break; case ENVCTRL_RD_VOLTAGE_STATUS: if (!(pchild = envctrl_get_i2c_child(ENVCTRL_VOLTAGESTAT_MON))) /* If voltage monitor not present, check for CPCI equivalent */ if (!(pchild = envctrl_get_i2c_child(ENVCTRL_GLOBALADDR_MON))) return 0; data[0] = envctrl_i2c_read_8574(pchild->addr); ret = envctrl_i2c_voltage_status(pchild, data[0], data); copy_to_user((unsigned char *)buf, data, ret); break; default: break; }; return ret;}/* Function Description: Command what to read. Mapped to user ioctl(). * Return: Gives 0 for implemented commands, -EINVAL otherwise. */static intenvctrl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg){ char *infobuf; switch (cmd) { case ENVCTRL_RD_WARNING_TEMPERATURE: case ENVCTRL_RD_SHUTDOWN_TEMPERATURE: case ENVCTRL_RD_MTHRBD_TEMPERATURE: case ENVCTRL_RD_FAN_STATUS: case ENVCTRL_RD_VOLTAGE_STATUS: case ENVCTRL_RD_ETHERNET_TEMPERATURE: case ENVCTRL_RD_SCSI_TEMPERATURE: case ENVCTRL_RD_GLOBALADDRESS: file->private_data = (void *)(long)cmd; break; case ENVCTRL_RD_CPU_TEMPERATURE: case ENVCTRL_RD_CPU_VOLTAGE: /* Check to see if application passes in any cpu number, * the default is cpu0. */ infobuf = (char *) arg; if (infobuf == NULL) { read_cpu = 0; }else { get_user(read_cpu, infobuf); } /* Save the command for use when reading. */ file->private_data = (void *)(long)cmd; break; default: return -EINVAL; }; return 0;}/* Function Description: open device. Mapped to user open(). * Return: Always 0. */static intenvctrl_open(struct inode *inode, struct file *file){ file->private_data = 0; MOD_INC_USE_COUNT; return 0;}/* Function Description: Open device. Mapped to user close(). * Return: Always 0. */static intenvctrl_release(struct inode *inode, struct file *file){ MOD_DEC_USE_COUNT; return 0;}static struct file_operations envctrl_fops = { owner: THIS_MODULE, read: envctrl_read, ioctl: envctrl_ioctl, open: envctrl_open, release: envctrl_release,}; static struct miscdevice envctrl_dev = { ENVCTRL_MINOR, "envctrl", &envctrl_fops};/* Function Description: Set monitor type based on firmware description. * Return: None. */static void envctrl_set_mon(struct i2c_child_t *pchild, char *chnl_desc, int chnl_no){ /* Firmware only has temperature type. It does not distinguish * different kinds of temperatures. We use channel description * to disinguish them. */ if (!(strcmp(chnl_desc,"temp,cpu")) || !(strcmp(chnl_desc,"temp,cpu0")) || !(strcmp(chnl_desc,"temp,cpu1")) || !(strcmp(chnl_desc,"temp,cpu2")) || !(strcmp(chnl_desc,"temp,cpu3"))) pchild->mon_type[chnl_no] = ENVCTRL_CPUTEMP_MON; if (!(strcmp(chnl_desc,"vddcore,cpu0")) || !(strcmp(chnl_desc,"vddcore,cpu1")) || !(strcmp(chnl_desc,"vddcore,cpu2")) || !(strcmp(chnl_desc,"vddcore,cpu3"))) pchild->mon_type[chnl_no] = ENVCTRL_CPUVOLTAGE_MON; if (!(strcmp(chnl_desc,"temp,motherboard"))) pchild->mon_type[chnl_no] = ENVCTRL_MTHRBDTEMP_MON; if (!(strcmp(chnl_desc,"temp,scsi"))) pchild->mon_type[chnl_no] = ENVCTRL_SCSITEMP_MON; if (!(strcmp(chnl_desc,"temp,ethernet"))) pchild->mon_type[chnl_no] = ENVCTRL_ETHERTEMP_MON;}/* Function Description: Initialize monitor channel with channel desc, * decoding tables, monitor type, optional properties. * Return: None. */static void envctrl_init_adc(struct i2c_child_t *pchild, int node){ char chnls_desc[CHANNEL_DESC_SZ]; int i, len, j = 0; char *ptr; /* Firmware describe channels into a stream separated by a '\0'. * Replace all '\0' with a space. */ len = prom_getproperty(node, "channels-description", chnls_desc, CHANNEL_DESC_SZ); for (i = 0; i < len; i++) { if (chnls_desc[i] == '\0') chnls_desc[i] = ' '; } ptr = strtok(chnls_desc, " "); while (ptr != NULL) { envctrl_set_mon(pchild, ptr, j); ptr = strtok(NULL, " "); j++; } /* Get optional properties. */ len = prom_getproperty(node, "warning-temp", (char *)&warning_temperature, sizeof(warning_temperature)); len = prom_getproperty(node, "shutdown-temp", (char *)&shutdown_temperature, sizeof(shutdown_temperature));}/* Function Description: Initialize child device monitoring fan status. * Return: None. */static void envctrl_init_fanstat(struct i2c_child_t *pchild){ int i; /* Go through all channels and set up the mask. */ for (i = 0; i < pchild->total_chnls; i++) pchild->fan_mask |= chnls_mask[(pchild->chnl_array[i]).chnl_no]; /* We only need to know if this child has fan status monitored. * We dont care which channels since we have the mask already. */ pchild->mon_type[0] = ENVCTRL_FANSTAT_MON;}/* Function Description: Initialize child device for global addressing line. * Return: None. */static void envctrl_init_globaladdr(struct i2c_child_t *pchild){ int i; /* Voltage/PowerSupply monitoring is piggybacked * with Global Address on CompactPCI. See comments * within envctrl_i2c_globaladdr for bit assignments. * * The mask is created here by assigning mask bits to each * bit position that represents PCF8584_VOLTAGE_TYPE data. * Channel numbers are not consecutive within the globaladdr * node (why?), so we use the actual counter value as chnls_mask * index instead of the chnl_array[x].chnl_no value. * * NOTE: This loop could be replaced with a constant representing * a mask of bits 5&6 (ENVCTRL_GLOBALADDR_PSTAT_MASK). */ for (i = 0; i < pchild->total_chnls; i++) { if (PCF8584_VOLTAGE_TYPE == pchild->chnl_array[i].type) { pchild->voltage_mask |= chnls_mask[i]; } } /* We only need to know if this child has global addressing * line monitored. We dont care which channels since we know * the mask already (ENVCTRL_GLOBALADDR_ADDR_MASK). */ pchild->mon_type[0] = ENVCTRL_GLOBALADDR_MON;}/* Initialize child device monitoring voltage status. */static void envctrl_init_voltage_status(struct i2c_child_t *pchild){ int i; /* Go through all channels and set up the mask. */ for (i = 0; i < pchild->total_chnls; i++) pchild->voltage_mask |= chnls_mask[(pchild->chnl_array[i]).chnl_no]; /* We only need to know if this child has voltage status monitored. * We dont care which channels since we have the mask already. */ pchild->mon_type[0] = ENVCTRL_VOLTAGESTAT_MON;}/* Function Description: Initialize i2c child device. * Return: None. */static void envctrl_init_i2c_child(struct linux_ebus_child *edev_child, struct i2c_child_t *pchild){ int node, len, i, tbls_size = 0; node = edev_child->prom_node; /* Get device address. */ len = prom_getproperty(node, "reg", (char *) &(pchild->addr), sizeof(pchild->addr)); /* Get tables property. Read firmware temperature tables. */ len = prom_getproperty(node, "translation", (char *) pchild->tblprop_array, (PCF8584_MAX_CHANNELS * sizeof(struct pcf8584_tblprop))); if (len > 0) { pchild->total_tbls = len / sizeof(struct pcf8584_tblprop); for (i = 0; i < pchild->total_tbls; i++) { if ((pchild->tblprop_array[i].size + pchild->tblprop_array[i].offset) > tbls_size) { tbls_size = pchild->tblprop_array[i].size + pchild->tblprop_array[i].offset; } } pchild->tables = kmalloc(tbls_size, GFP_KERNEL); len = prom_getproperty(node, "tables", (char *) pchild->tables, tbls_size); if (len <= 0) { printk("envctrl: Failed to get table.\n"); return; } } /* SPARCengine ASM Reference Manual (ref. SMI doc 805-7581-04) * sections 2.5, 3.5, 4.5 state node 0x70 for CP1400/1500 is * "For Factory Use Only." * * We ignore the node on these platforms by assigning the * 'NULL' monitor type. */ if (ENVCTRL_CPCI_IGNORED_NODE == pchild->addr) { int len; char prop[56]; len = prom_getproperty(prom_root_node, "name", prop, sizeof(prop)); if (0 < len && (0 == strncmp(prop, "SUNW,UltraSPARC-IIi-cEngine", len))) { for (len = 0; len < PCF8584_MAX_CHANNELS; ++len) { pchild->mon_type[len] = ENVCTRL_NOMON; } return; } } /* Get the monitor channels. */ len = prom_getproperty(node, "channels-in-use", (char *) pchild->chnl_array, (PCF8584_MAX_CHANNELS * sizeof(struct pcf8584_channel))); pchild->total_chnls = len / sizeof(struct pcf8584_channel); for (i = 0; i < pchild->total_chnls; i++) { switch (pchild->chnl_array[i].type) { case PCF8584_TEMP_TYPE: envctrl_init_adc(pchild, node); break; case PCF8584_GLOBALADDR_TYPE: envctrl_init_globaladdr(pchild); i = pchild->total_chnls; break; case PCF8584_FANSTAT_TYPE: envctrl_init_fanstat(pchild); i = pchild->total_chnls; break; case PCF8584_VOLTAGE_TYPE: if (pchild->i2ctype == I2C_ADC) { envctrl_init_adc(pchild,node); } else { envctrl_init_voltage_status(pchild); } i = pchild->total_chnls; break; default: break; }; }}/* Function Description: Search the child device list for a device. * Return : The i2c child if found. NULL otherwise. */static struct i2c_child_t *envctrl_get_i2c_child(unsigned char mon_type){ int i, j; for (i = 0; i < ENVCTRL_MAX_CPU*2; i++) { for (j = 0; j < PCF8584_MAX_CHANNELS; j++) { if (i2c_childlist[i].mon_type[j] == mon_type) { return (struct i2c_child_t *)(&(i2c_childlist[i])); } } } return NULL;}static int __init envctrl_init(void){#ifdef CONFIG_PCI struct linux_ebus *ebus = NULL; struct linux_ebus_device *edev = NULL; struct linux_ebus_child *edev_child = NULL; int i = 0; /* Traverse through ebus and ebus device list for i2c device and * adc and gpio nodes. */ for_each_ebus(ebus) { for_each_ebusdev(edev, ebus) { if (!strcmp(edev->prom_name, "i2c")) { i2c = ioremap( edev->resource[0].start, sizeof(struct pcf8584_reg)); for_each_edevchild(edev, edev_child) { if (!strcmp("gpio", edev_child->prom_name)) { i2c_childlist[i].i2ctype = I2C_GPIO; envctrl_init_i2c_child(edev_child, &(i2c_childlist[i++])); } if (!strcmp("adc", edev_child->prom_name)) { i2c_childlist[i].i2ctype = I2C_ADC; envctrl_init_i2c_child(edev_child, &(i2c_childlist[i++])); } } goto done; } } }done: if (!edev) { printk("envctrl: I2C device not found.\n"); return -ENODEV; } /* Set device address. */ envctrl_writeb(CONTROL_PIN, &i2c->csr); envctrl_writeb(PCF8584_ADDRESS, &i2c->data); /* Set system clock and SCL frequencies. */ envctrl_writeb(CONTROL_PIN | CONTROL_ES1, &i2c->csr); envctrl_writeb(CLK_4_43 | BUS_CLK_90, &i2c->data); /* Enable serial interface. */ envctrl_writeb(CONTROL_PIN | CONTROL_ES0 | CONTROL_ACK, &i2c->csr); udelay(200); /* Register the device as a minor miscellaneous device. */ if (misc_register(&envctrl_dev)) { printk("envctrl: Unable to get misc minor %d\n", envctrl_dev.minor); } /* Note above traversal routine post-incremented 'i' to accomodate * a next child device, so we decrement before reverse-traversal of * child devices. */ printk("envctrl: initialized "); for (--i; i >= 0; --i) { printk("[%s 0x%lx]%s", (I2C_ADC == i2c_childlist[i].i2ctype) ? ("adc") : ((I2C_GPIO == i2c_childlist[i].i2ctype) ? ("gpio") : ("unknown")), i2c_childlist[i].addr, (0 == i) ? ("\n") : (" ")); } return 0;#else return -ENODEV;#endif}static void __exit envctrl_cleanup(void){ int i; iounmap(i2c); misc_deregister(&envctrl_dev); for (i = 0; i < ENVCTRL_MAX_CPU * 2; i++) { if (i2c_childlist[i].tables) kfree(i2c_childlist[i].tables); }}module_init(envctrl_init);module_exit(envctrl_cleanup);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -