⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 core_cia.c

📁 讲述linux的初始化过程
💻 C
📖 第 1 页 / 共 2 页
字号:
/* *	linux/arch/alpha/kernel/core_cia.c * * Written by David A Rusling (david.rusling@reo.mts.dec.com). * December 1995. * *	Copyright (C) 1995  David A Rusling *	Copyright (C) 1997, 1998  Jay Estabrook *	Copyright (C) 1998, 1999, 2000  Richard Henderson * * Code common to all CIA core logic chips. */#include <linux/kernel.h>#include <linux/types.h>#include <linux/pci.h>#include <linux/sched.h>#include <linux/init.h>#include <asm/system.h>#include <asm/ptrace.h>#include <asm/hwrpb.h>#define __EXTERN_INLINE inline#include <asm/io.h>#include <asm/core_cia.h>#undef __EXTERN_INLINE#include <linux/bootmem.h>#include "proto.h"#include "pci_impl.h"/* * NOTE: Herein lie back-to-back mb instructions.  They are magic.  * One plausible explanation is that the i/o controller does not properly * handle the system transaction.  Another involves timing.  Ho hum. */#define DEBUG_CONFIG 0#if DEBUG_CONFIG# define DBGC(args)	printk args#else# define DBGC(args)#endif#define vip	volatile int  */* * Given a bus, device, and function number, compute resulting * configuration space address.  It is therefore not safe to have * concurrent invocations to configuration space access routines, but * there really shouldn't be any need for this. * * Type 0: * *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1  *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | | |D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|0| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * *	31:11	Device select bit. * 	10:8	Function number * 	 7:2	Register number * * Type 1: * *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1  *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * *	31:24	reserved *	23:16	bus number (8 bits = 128 possible buses) *	15:11	Device number (5 bits) *	10:8	function number *	 7:2	register number *   * Notes: *	The function number selects which function of a multi-function device  *	(e.g., SCSI and Ethernet). *  *	The register selects a DWORD (32 bit) register offset.  Hence it *	doesn't get shifted by 2 bits as we want to "drop" the bottom two *	bits. */static intmk_conf_addr(struct pci_dev *dev, int where, unsigned long *pci_addr,	     unsigned char *type1){	u8 bus = dev->bus->number;	u8 device_fn = dev->devfn;	*type1 = (bus != 0);	*pci_addr = (bus << 16) | (device_fn << 8) | where;	DBGC(("mk_conf_addr(bus=%d ,device_fn=0x%x, where=0x%x,"	      " returning address 0x%p\n"	      bus, device_fn, where, *pci_addr));	return 0;}static unsigned intconf_read(unsigned long addr, unsigned char type1){	unsigned long flags;	int stat0, value;	int cia_cfg = 0;	DBGC(("conf_read(addr=0x%lx, type1=%d) ", addr, type1));	__save_and_cli(flags);	/* Reset status register to avoid losing errors.  */	stat0 = *(vip)CIA_IOC_CIA_ERR;	*(vip)CIA_IOC_CIA_ERR = stat0;	mb();	*(vip)CIA_IOC_CIA_ERR; /* re-read to force write */	/* If Type1 access, must set CIA CFG. */	if (type1) {		cia_cfg = *(vip)CIA_IOC_CFG;		*(vip)CIA_IOC_CFG = (cia_cfg & ~3) | 1;		mb();		*(vip)CIA_IOC_CFG;	}	mb();	draina();	mcheck_expected(0) = 1;	mcheck_taken(0) = 0;	mb();	/* Access configuration space.  */	value = *(vip)addr;	mb();	mb();  /* magic */	if (mcheck_taken(0)) {		mcheck_taken(0) = 0;		value = 0xffffffff;		mb();	}	mcheck_expected(0) = 0;	mb();	/* If Type1 access, must reset IOC CFG so normal IO space ops work.  */	if (type1) {		*(vip)CIA_IOC_CFG = cia_cfg;		mb();		*(vip)CIA_IOC_CFG;	}	__restore_flags(flags);	DBGC(("done\n"));	return value;}static voidconf_write(unsigned long addr, unsigned int value, unsigned char type1){	unsigned long flags;	int stat0, cia_cfg = 0;	DBGC(("conf_write(addr=0x%lx, type1=%d) ", addr, type1));	__save_and_cli(flags);	/* Reset status register to avoid losing errors.  */	stat0 = *(vip)CIA_IOC_CIA_ERR;	*(vip)CIA_IOC_CIA_ERR = stat0;	mb();	*(vip)CIA_IOC_CIA_ERR; /* re-read to force write */	/* If Type1 access, must set CIA CFG.  */	if (type1) {		cia_cfg = *(vip)CIA_IOC_CFG;		*(vip)CIA_IOC_CFG = (cia_cfg & ~3) | 1;		mb();		*(vip)CIA_IOC_CFG;	}	mb();	draina();	mcheck_expected(0) = 1;	mcheck_taken(0) = 0;	mb();	/* Access configuration space.  */	*(vip)addr = value;	mb();	*(vip)addr; /* read back to force the write */	mcheck_expected(0) = 0;	mb();	/* If Type1 access, must reset IOC CFG so normal IO space ops work.  */	if (type1) {		*(vip)CIA_IOC_CFG = cia_cfg;		mb();		*(vip)CIA_IOC_CFG;	}	__restore_flags(flags);	DBGC(("done\n"));}static intcia_read_config_byte(struct pci_dev *dev, int where, u8 *value){	unsigned long addr, pci_addr;	unsigned char type1;	if (mk_conf_addr(dev, where, &pci_addr, &type1))		return PCIBIOS_DEVICE_NOT_FOUND;	addr = (pci_addr << 5) + 0x00 + CIA_CONF;	*value = conf_read(addr, type1) >> ((where & 3) * 8);	return PCIBIOS_SUCCESSFUL;}static int cia_read_config_word(struct pci_dev *dev, int where, u16 *value){	unsigned long addr, pci_addr;	unsigned char type1;	if (mk_conf_addr(dev, where, &pci_addr, &type1))		return PCIBIOS_DEVICE_NOT_FOUND;	addr = (pci_addr << 5) + 0x08 + CIA_CONF;	*value = conf_read(addr, type1) >> ((where & 3) * 8);	return PCIBIOS_SUCCESSFUL;}static int cia_read_config_dword(struct pci_dev *dev, int where, u32 *value){	unsigned long addr, pci_addr;	unsigned char type1;	if (mk_conf_addr(dev, where, &pci_addr, &type1))		return PCIBIOS_DEVICE_NOT_FOUND;	addr = (pci_addr << 5) + 0x18 + CIA_CONF;	*value = conf_read(addr, type1);	return PCIBIOS_SUCCESSFUL;}static int cia_write_config(struct pci_dev *dev, int where, u32 value, long mask){	unsigned long addr, pci_addr;	unsigned char type1;	if (mk_conf_addr(dev, where, &pci_addr, &type1))		return PCIBIOS_DEVICE_NOT_FOUND;	addr = (pci_addr << 5) + mask + CIA_CONF;	conf_write(addr, value << ((where & 3) * 8), type1);	return PCIBIOS_SUCCESSFUL;}static intcia_write_config_byte(struct pci_dev *dev, int where, u8 value){	return cia_write_config(dev, where, value, 0x00);}static int cia_write_config_word(struct pci_dev *dev, int where, u16 value){	return cia_write_config(dev, where, value, 0x08);}static int cia_write_config_dword(struct pci_dev *dev, int where, u32 value){	return cia_write_config(dev, where, value, 0x18);}struct pci_ops cia_pci_ops = {	read_byte:	cia_read_config_byte,	read_word:	cia_read_config_word,	read_dword:	cia_read_config_dword,	write_byte:	cia_write_config_byte,	write_word:	cia_write_config_word,	write_dword:	cia_write_config_dword};/* * CIA Pass 1 and PYXIS Pass 1 and 2 have a broken scatter-gather tlb. * It cannot be invalidated.  Rather than hard code the pass numbers, * actually try the tbia to see if it works. */voidcia_pci_tbi(struct pci_controler *hose, dma_addr_t start, dma_addr_t end){	wmb();	*(vip)CIA_IOC_PCI_TBIA = 3;	/* Flush all locked and unlocked.  */	mb();	*(vip)CIA_IOC_PCI_TBIA;}/* * Fixup attempt number 1. * * Write zeros directly into the tag registers. */static voidcia_pci_tbi_try1(struct pci_controler *hose,		 dma_addr_t start, dma_addr_t end){	wmb();	*(vip)CIA_IOC_TB_TAGn(0) = 0;	*(vip)CIA_IOC_TB_TAGn(1) = 0;	*(vip)CIA_IOC_TB_TAGn(2) = 0;	*(vip)CIA_IOC_TB_TAGn(3) = 0;	*(vip)CIA_IOC_TB_TAGn(4) = 0;	*(vip)CIA_IOC_TB_TAGn(5) = 0;	*(vip)CIA_IOC_TB_TAGn(6) = 0;	*(vip)CIA_IOC_TB_TAGn(7) = 0;	mb();	*(vip)CIA_IOC_TB_TAGn(0);}#if 0/* * Fixup attempt number 2.  This is the method NT and NetBSD use. * * Allocate mappings, and put the chip into DMA loopback mode to read a * garbage page.  This works by causing TLB misses, causing old entries to * be purged to make room for the new entries coming in for the garbage page. */#define CIA_BROKEN_TBI_TRY2_BASE	0xE0000000static void __initcia_enable_broken_tbi_try2(void){	unsigned long *ppte, pte;	long i;	ppte = __alloc_bootmem(PAGE_SIZE, 32768, 0);	pte = (virt_to_phys(ppte) >> (PAGE_SHIFT - 1)) | 1;	for (i = 0; i < PAGE_SIZE / sizeof(unsigned long); ++i)		ppte[i] = pte;	*(vip)CIA_IOC_PCI_W3_BASE = CIA_BROKEN_TBI_TRY2_BASE | 3;	*(vip)CIA_IOC_PCI_W3_MASK = (PAGE_SIZE - 1) & 0xfff00000;	*(vip)CIA_IOC_PCI_T3_BASE = virt_to_phys(ppte) >> 2;}static voidcia_pci_tbi_try2(struct pci_controler *hose,		 dma_addr_t start, dma_addr_t end){	unsigned long flags;	unsigned long bus_addr;	int ctrl;	long i;	__save_and_cli(flags);	/* Put the chip into PCI loopback mode.  */	mb();	ctrl = *(vip)CIA_IOC_CIA_CTRL;	*(vip)CIA_IOC_CIA_CTRL = ctrl | CIA_CTRL_PCI_LOOP_EN;	mb();	*(vip)CIA_IOC_CIA_CTRL;	mb();	/* Read from PCI dense memory space at TBI_ADDR, skipping 32k on	   each read.  This forces SG TLB misses.  NetBSD claims that the	   TLB entries are not quite LRU, meaning that we need to read more	   times than there are actual tags.  The 2117x docs claim strict	   round-robin.  Oh well, we've come this far...  */	bus_addr = cia_ioremap(CIA_BROKEN_TBI_TRY2_BASE);	for (i = 0; i < 12; ++i, bus_addr += 32768)		cia_readl(bus_addr);	/* Restore normal PCI operation.  */	mb();	*(vip)CIA_IOC_CIA_CTRL = ctrl;	mb();	*(vip)CIA_IOC_CIA_CTRL;	mb();	__restore_flags(flags);}#endifstatic void __initverify_tb_operation(void){	static int page[PAGE_SIZE/4]		__attribute__((aligned(PAGE_SIZE)))		__initdata = { 0 };	struct pci_iommu_arena *arena = pci_isa_hose->sg_isa;	int ctrl, addr0, tag0, pte0, data0;	int temp;	/* Put the chip into PCI loopback mode.  */	mb();	ctrl = *(vip)CIA_IOC_CIA_CTRL;	*(vip)CIA_IOC_CIA_CTRL = ctrl | CIA_CTRL_PCI_LOOP_EN;	mb();	*(vip)CIA_IOC_CIA_CTRL;	mb();	/* Write a valid entry directly into the TLB registers.  */	addr0 = arena->dma_base;	tag0 = addr0 | 1;	pte0 = (virt_to_phys(page) >> (PAGE_SHIFT - 1)) | 1;	*(vip)CIA_IOC_TB_TAGn(0) = tag0;	*(vip)CIA_IOC_TB_TAGn(1) = 0;	*(vip)CIA_IOC_TB_TAGn(2) = 0;	*(vip)CIA_IOC_TB_TAGn(3) = 0;	*(vip)CIA_IOC_TB_TAGn(4) = 0;	*(vip)CIA_IOC_TB_TAGn(5) = 0;	*(vip)CIA_IOC_TB_TAGn(6) = 0;	*(vip)CIA_IOC_TB_TAGn(7) = 0;	*(vip)CIA_IOC_TBn_PAGEm(0,0) = pte0;	*(vip)CIA_IOC_TBn_PAGEm(0,1) = 0;	*(vip)CIA_IOC_TBn_PAGEm(0,2) = 0;	*(vip)CIA_IOC_TBn_PAGEm(0,3) = 0;	mb();	/* First, verify we can read back what we've written.  If	   this fails, we can't be sure of any of the other testing	   we're going to do, so bail.  */	/* ??? Actually, we could do the work with machine checks.	   By passing this register update test, we pretty much	   guarantee that cia_pci_tbi_try1 works.  If this test	   fails, cia_pci_tbi_try2 might still work.  */	temp = *(vip)CIA_IOC_TB_TAGn(0);	if (temp != tag0) {		printk("pci: failed tb register update test "		       "(tag0 %#x != %#x)\n", temp, tag0);		goto failed;	}	temp = *(vip)CIA_IOC_TB_TAGn(1);	if (temp != 0) {		printk("pci: failed tb register update test "		       "(tag1 %#x != 0)\n", temp);		goto failed;	}	temp = *(vip)CIA_IOC_TBn_PAGEm(0,0);	if (temp != pte0) {		printk("pci: failed tb register update test "		       "(pte0 %#x != %#x)\n", temp, pte0);		goto failed;	}	printk("pci: passed tb register update test\n");	/* Second, verify we can actually do I/O through this entry.  */	data0 = 0xdeadbeef;	page[0] = data0;	mcheck_expected(0) = 1;	mcheck_taken(0) = 0;	mb();	temp = cia_readl(cia_ioremap(addr0));	mb();	mcheck_expected(0) = 0;	mb();	if (mcheck_taken(0)) {		printk("pci: failed sg loopback i/o read test (mcheck)\n");		goto failed;	}	if (temp != data0) {		printk("pci: failed sg loopback i/o read test "		       "(%#x != %#x)\n", temp, data0);		goto failed;	}	printk("pci: passed sg loopback i/o read test\n");	/* Third, try to invalidate the TLB.  */	cia_pci_tbi(arena->hose, 0, -1);	temp = *(vip)CIA_IOC_TB_TAGn(0);	if (temp & 1) {		cia_pci_tbi_try1(arena->hose, 0, -1);			temp = *(vip)CIA_IOC_TB_TAGn(0);		if (temp & 1) {			printk("pci: failed tbia test; "			       "no usable workaround\n");			goto failed;		}		alpha_mv.mv_pci_tbi = cia_pci_tbi_try1;		printk("pci: failed tbia test; workaround 1 succeeded\n");	} else {		printk("pci: passed tbia test\n");	}	/* Fourth, verify the TLB snoops the EV5's caches when	   doing a tlb fill.  */	data0 = 0x5adda15e;	page[0] = data0;	arena->ptes[4] = pte0;	mcheck_expected(0) = 1;	mcheck_taken(0) = 0;	mb();	temp = cia_readl(cia_ioremap(addr0 + 4*PAGE_SIZE));	mb();	mcheck_expected(0) = 0;	mb();	if (mcheck_taken(0)) {		printk("pci: failed pte write cache snoop test (mcheck)\n");		goto failed;	}	if (temp != data0) {		printk("pci: failed pte write cache snoop test "		       "(%#x != %#x)\n", temp, data0);		goto failed;	}	printk("pci: passed pte write cache snoop test\n");	/* Fifth, verify that a previously invalid PTE entry gets	   filled from the page table.  */	data0 = 0xabcdef12;	page[0] = data0;	arena->ptes[5] = pte0;	mcheck_expected(0) = 1;	mcheck_taken(0) = 0;	mb();	temp = cia_readl(cia_ioremap(addr0 + 5*PAGE_SIZE));	mb();	mcheck_expected(0) = 0;	mb();	if (mcheck_taken(0)) {		printk("pci: failed valid tag invalid pte reload test "		       "(mcheck; workaround available)\n");		/* Work around this bug by aligning new allocations		   on 4 page boundaries.  */		arena->align_entry = 4;	} else if (temp != data0) {		printk("pci: failed valid tag invalid pte reload test "		       "(%#x != %#x)\n", temp, data0);		goto failed;	} else {		printk("pci: passed valid tag invalid pte reload test\n");	}	/* Sixth, verify machine checks are working.  Test invalid	   pte under the same valid tag as we used above.  */	mcheck_expected(0) = 1;	mcheck_taken(0) = 0;	mb();	temp = cia_readl(cia_ioremap(addr0 + 6*PAGE_SIZE));	mb();	mcheck_expected(0) = 0;	mb();

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -