📄 stanh.s
字号:
|| stanh.sa 3.1 12/10/90|| The entry point sTanh computes the hyperbolic tangent of| an input argument; sTanhd does the same except for denormalized| input.|| Input: Double-extended number X in location pointed to| by address register a0.|| Output: The value tanh(X) returned in floating-point register Fp0.|| Accuracy and Monotonicity: The returned result is within 3 ulps in| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the| result is subsequently rounded to double precision. The| result is provably monotonic in double precision.|| Speed: The program stanh takes approximately 270 cycles.|| Algorithm:|| TANH| 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3.|| 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by| sgn := sign(X), y := 2|X|, z := expm1(Y), and| tanh(X) = sgn*( z/(2+z) ).| Exit.|| 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1,| go to 7.|| 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6.|| 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by| sgn := sign(X), y := 2|X|, z := exp(Y),| tanh(X) = sgn - [ sgn*2/(1+z) ].| Exit.|| 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we| calculate Tanh(X) by| sgn := sign(X), Tiny := 2**(-126),| tanh(X) := sgn - sgn*Tiny.| Exit.|| 7. (|X| < 2**(-40)). Tanh(X) = X. Exit.|| Copyright (C) Motorola, Inc. 1990| All Rights Reserved|| THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA | The copyright notice above does not evidence any | actual or intended publication of such source code.|STANH idnt 2,1 | Motorola 040 Floating Point Software Package |section 8 .include "fpsp.h" .set X,FP_SCR5 .set XDCARE,X+2 .set XFRAC,X+4 .set SGN,L_SCR3 .set V,FP_SCR6BOUNDS1: .long 0x3FD78000,0x3FFFDDCE | ... 2^(-40), (5/2)LOG2 |xref t_frcinx |xref t_extdnrm |xref setox |xref setoxm1 .global stanhdstanhd:|--TANH(X) = X FOR DENORMALIZED X bra t_extdnrm .global stanhstanh: fmovex (%a0),%fp0 | ...LOAD INPUT fmovex %fp0,X(%a6) movel (%a0),%d0 movew 4(%a0),%d0 movel %d0,X(%a6) andl #0x7FFFFFFF,%d0 cmp2l BOUNDS1(%pc),%d0 | ...2**(-40) < |X| < (5/2)LOG2 ? bcss TANHBORS|--THIS IS THE USUAL CASE|--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2). movel X(%a6),%d0 movel %d0,SGN(%a6) andl #0x7FFF0000,%d0 addl #0x00010000,%d0 | ...EXPONENT OF 2|X| movel %d0,X(%a6) andl #0x80000000,SGN(%a6) fmovex X(%a6),%fp0 | ...FP0 IS Y = 2|X| movel %d1,-(%a7) clrl %d1 fmovemx %fp0-%fp0,(%a0) bsr setoxm1 | ...FP0 IS Z = EXPM1(Y) movel (%a7)+,%d1 fmovex %fp0,%fp1 fadds #0x40000000,%fp1 | ...Z+2 movel SGN(%a6),%d0 fmovex %fp1,V(%a6) eorl %d0,V(%a6) fmovel %d1,%FPCR |restore users exceptions fdivx V(%a6),%fp0 bra t_frcinxTANHBORS: cmpl #0x3FFF8000,%d0 blt TANHSM cmpl #0x40048AA1,%d0 bgt TANHHUGE|-- (5/2) LOG2 < |X| < 50 LOG2,|--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X),|--TANH(X) = SGN - SGN*2/[EXP(Y)+1]. movel X(%a6),%d0 movel %d0,SGN(%a6) andl #0x7FFF0000,%d0 addl #0x00010000,%d0 | ...EXPO OF 2|X| movel %d0,X(%a6) | ...Y = 2|X| andl #0x80000000,SGN(%a6) movel SGN(%a6),%d0 fmovex X(%a6),%fp0 | ...Y = 2|X| movel %d1,-(%a7) clrl %d1 fmovemx %fp0-%fp0,(%a0) bsr setox | ...FP0 IS EXP(Y) movel (%a7)+,%d1 movel SGN(%a6),%d0 fadds #0x3F800000,%fp0 | ...EXP(Y)+1 eorl #0xC0000000,%d0 | ...-SIGN(X)*2 fmoves %d0,%fp1 | ...-SIGN(X)*2 IN SGL FMT fdivx %fp0,%fp1 | ...-SIGN(X)2 / [EXP(Y)+1 ] movel SGN(%a6),%d0 orl #0x3F800000,%d0 | ...SGN fmoves %d0,%fp0 | ...SGN IN SGL FMT fmovel %d1,%FPCR |restore users exceptions faddx %fp1,%fp0 bra t_frcinxTANHSM: movew #0x0000,XDCARE(%a6) fmovel %d1,%FPCR |restore users exceptions fmovex X(%a6),%fp0 |last inst - possible exception set bra t_frcinxTANHHUGE:|---RETURN SGN(X) - SGN(X)EPS movel X(%a6),%d0 andl #0x80000000,%d0 orl #0x3F800000,%d0 fmoves %d0,%fp0 andl #0x80000000,%d0 eorl #0x80800000,%d0 | ...-SIGN(X)*EPS fmovel %d1,%FPCR |restore users exceptions fadds %d0,%fp0 bra t_frcinx |end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -