📄 midinote.cpp
字号:
// -----------------------------------------------------------------------------
//
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
// Copyright (c) 1995-2000 Microsoft Corporation. All rights reserved.
//
// -----------------------------------------------------------------------------
#include "wavemain.h"
// x is the desired frequency
#define FREQRATIO(x) (double(x)/double(SAMPLERATE))
#define PITCH(x) ( (UINT32 ) ( FREQRATIO(x) * double(1i64 << 32)) )
#define EQUAL (1.059463094359)
#ifdef EUROPE
#define A (442.0)
#else
#define A (440.0)
#endif
#define ASHARP (A * EQUAL)
#define B (ASHARP * EQUAL)
#define C (B * EQUAL / 2.0)
#define CSHARP (C * EQUAL)
#define DNOTE (CSHARP * EQUAL)
#define DSHARP (DNOTE * EQUAL)
#define E (DSHARP * EQUAL)
#define F (E * EQUAL)
#define FSHARP (F * EQUAL)
#define G (FSHARP * EQUAL)
#define GSHARP (G * EQUAL)
// pitch values, from middle c to octave above
const UINT32 CMidiNote::PitchTable[ 12 ] =
{
PITCH(C),
PITCH(CSHARP),
PITCH(DNOTE),
PITCH(DSHARP),
PITCH(E),
PITCH(F),
PITCH(FSHARP),
PITCH(G),
PITCH(GSHARP),
PITCH(A),
PITCH(ASHARP),
PITCH(B)
};
const INT16 CMidiNote::SineTable[0x101] =
{
0,
804,
1607,
2410,
3211,
4011,
4807,
5601,
6392,
7179,
7961,
8739,
9511,
10278,
11038,
11792,
12539,
13278,
14009,
14732,
15446,
16150,
16845,
17530,
18204,
18867,
19519,
20159,
20787,
21402,
22004,
22594,
23169,
23731,
24278,
24811,
25329,
25831,
26318,
26789,
27244,
27683,
28105,
28510,
28897,
29268,
29621,
29955,
30272,
30571,
30851,
31113,
31356,
31580,
31785,
31970,
32137,
32284,
32412,
32520,
32609,
32678,
32727,
32757,
32767,
32757,
32727,
32678,
32609,
32520,
32412,
32284,
32137,
31970,
31785,
31580,
31356,
31113,
30851,
30571,
30272,
29955,
29621,
29268,
28897,
28510,
28105,
27683,
27244,
26789,
26318,
25831,
25329,
24811,
24278,
23731,
23169,
22594,
22004,
21402,
20787,
20159,
19519,
18867,
18204,
17530,
16845,
16150,
15446,
14732,
14009,
13278,
12539,
11792,
11038,
10278,
9511,
8739,
7961,
7179,
6392,
5601,
4807,
4011,
3211,
2410,
1607,
804,
0,
-804,
-1607,
-2410,
-3211,
-4011,
-4807,
-5601,
-6392,
-7179,
-7961,
-8739,
-9511,
-10278,
-11038,
-11792,
-12539,
-13278,
-14009,
-14732,
-15446,
-16150,
-16845,
-17530,
-18204,
-18867,
-19519,
-20159,
-20787,
-21402,
-22004,
-22594,
-23169,
-23731,
-24278,
-24811,
-25329,
-25831,
-26318,
-26789,
-27244,
-27683,
-28105,
-28510,
-28897,
-29268,
-29621,
-29955,
-30272,
-30571,
-30851,
-31113,
-31356,
-31580,
-31785,
-31970,
-32137,
-32284,
-32412,
-32520,
-32609,
-32678,
-32727,
-32757,
-32767,
-32757,
-32727,
-32678,
-32609,
-32520,
-32412,
-32284,
-32137,
-31970,
-31785,
-31580,
-31356,
-31113,
-30851,
-30571,
-30272,
-29955,
-29621,
-29268,
-28897,
-28510,
-28105,
-27683,
-27244,
-26789,
-26318,
-25831,
-25329,
-24811,
-24278,
-23731,
-23169,
-22594,
-22004,
-21402,
-20787,
-20159,
-19519,
-18867,
-18204,
-17530,
-16845,
-16150,
-15446,
-14732,
-14009,
-13278,
-12539,
-11792,
-11038,
-10278,
-9511,
-8739,
-7961,
-7179,
-6392,
-5601,
-4807,
-4011,
-3211,
-2410,
-1607,
-804,
0 // Extra sample here saves 1 instruction in interpolation case
};
void CMidiNote::GainChange()
{
m_fxpGain = m_pMidiStream->MapNoteGain(m_dwGain);
}
HRESULT CMidiNote::NoteOn(CMidiStream *pMidiStream, UINT32 Note, UINT32 Velocity, UINT32 Channel)
{
// Save params
m_pMidiStream = pMidiStream;
m_Note = Note;
m_Channel = Channel;
SetVelocity(Velocity);
// Init pitch
m_Index = 0;
if (Channel==FREQCHANNEL)
{
m_IndexDelta = (Note * INVSAMPLERATE);
}
else
{
m_IndexDelta = PitchTable[ Note % 12 ] ;
// Adjust octave
int Octave = ((int)(Note/12)) - 5;
if (Octave>0)
{
m_IndexDelta <<= Octave;
}
else if (Octave<0)
{
m_IndexDelta >>= -Octave;
}
}
return S_OK;
}
HRESULT CMidiNote::NoteOff(UINT32 Velocity)
{
m_pMidiStream->NoteDone(this);
return S_OK;
}
// Inner loop of the note renderer.
PBYTE CMidiNote::Render(PBYTE pBuffer, PBYTE pBufferEnd, PBYTE pBufferLast)
{
// Cache values so compiler won't worry about aliasing
UINT32 Index = m_Index;
UINT32 IndexDelta = m_IndexDelta;
const INT16 * pSineTable = SineTable;
LONG fxpGain = m_fxpGain;
while (pBuffer < pBufferEnd)
{
// Index is in 8.24 format, where the top 8 bits index into the sine table and
// the lower 24 bits represent the fraction of where we sit between two adjacent
// samples, which we can use if we're doing linear interpolation
// I chose 8.24 format so that wrap around at the top of the table happens
// automatically without the need to do any ANDing.
// Get an index into the sine table and look up the sample.
UINT32 TableIndex = Index>>24;
INT32 OutSamp0 = pSineTable[TableIndex];
#if MIDI_OPTIMIZE_LINEAR_INTERPOLATE
// If we're doing linear interpolation, get the next sample also. Note that I don't
// need to worry about wrap around at the top of the table because the sine table has
// an extra value tacked onto the end to handle this special case.
INT32 NextSamp = pSineTable[TableIndex+1];
// Now do the interpolation, adjusting the index to be in 16.16 format and throwing away
// the integer part.
OutSamp0 += ( (NextSamp - OutSamp0) * ((Index>>8)&0xFFFF) ) >> 16;
#endif
// Increment the index to move to the next sample
// and keep within the valid range
Index += IndexDelta;
// Volume!
OutSamp0 = (OutSamp0 * fxpGain) >> VOLSHIFT;
#if (OUTCHANNELS==2)
INT32 OutSamp1;
OutSamp1=OutSamp0;
if (pBuffer < pBufferLast)
{
OutSamp0 += ((HWSAMPLE *)pBuffer)[0];
OutSamp1 += ((HWSAMPLE *)pBuffer)[1];
#if USE_MIX_SATURATE
// Handle saturation
if (OutSamp0>AUDIO_SAMPLE_MAX)
{
OutSamp0=AUDIO_SAMPLE_MAX;
}
else if (OutSamp0<AUDIO_SAMPLE_MIN)
{
OutSamp0=AUDIO_SAMPLE_MIN;
}
if (OutSamp1>AUDIO_SAMPLE_MAX)
{
OutSamp1=AUDIO_SAMPLE_MAX;
}
else if (OutSamp1<AUDIO_SAMPLE_MIN)
{
OutSamp1=AUDIO_SAMPLE_MIN;
}
#endif
}
((HWSAMPLE *)pBuffer)[0] = (HWSAMPLE)OutSamp0;
((HWSAMPLE *)pBuffer)[1] = (HWSAMPLE)OutSamp1;
pBuffer += 2*sizeof(HWSAMPLE);
#else
if (pBuffer<pBufferLast)
{
// Store/sum to the output buffer
OutSamp0 += *(HWSAMPLE *)pBuffer;
#if USE_MIX_SATURATE
// Handle saturation
if (OutSamp0>AUDIO_SAMPLE_MAX)
{
OutSamp0=AUDIO_SAMPLE_MAX;
}
else if (OutSamp0<AUDIO_SAMPLE_MIN)
{
OutSamp0=AUDIO_SAMPLE_MIN;
}
#endif
}
((HWSAMPLE *)pBuffer)[0] = (HWSAMPLE)OutSamp0;
pBuffer+=sizeof(HWSAMPLE);
#endif
}
// Save cached settings that might have changed in the inner loop
m_Index = Index;
return pBuffer;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -