📄 simplealgorithm.cpp
字号:
/*! \file SimpleAlgorithm.cpp
\brief This file implements class of simple genetic algorithm with non-overlapping populations.
*/
/*
*
* website: http://www.coolsoft-sd.com/
* contact: support@coolsoft-sd.com
*
*/
/*
* Genetic Algorithm Library
* Copyright (C) 2007-2008 Coolsoft Software Development
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "Population.h"
#include "SimpleAlgorithm.h"
namespace Algorithm
{
namespace SimpleAlgorithms
{
// Initialize algorithm
GaSimpleAlgorithm::GaSimpleAlgorithm(GaPopulation* population,
const GaSimpleAlgorithmParams& parameters) : GaMultithreadingAlgorithm(parameters)
{
_populations[ GAPT_POPULATION_A ] = population;
_populations[ GAPT_POPULATION_B ] = NULL;
int buffers = parameters.GetNumberOfWorkers() * 2;
_buffers[ GAPT_POPULATION_A ] =
new GaCouplingResultSet( 0, new GaSelectionResultSet( 0, population ) );
_buffers[ GAPT_POPULATION_B ] = NULL;
_elitismBuffer = parameters.GetElitism() > 0 ? new GaChromosomePtr[ parameters.GetElitism() ] : NULL;
_parameters = parameters;
}
// Free resources
GaSimpleAlgorithm::~GaSimpleAlgorithm()
{
for( int i = 0; i < 2; i++ )
{
if( _buffers[ i ] )
{
delete &_buffers[ i ]->GetSelectionResultSet();
delete _buffers[ i ];
}
}
if( _populations[ GAPT_POPULATION_B ] )
delete _populations[ GAPT_POPULATION_B ];
if( _elitismBuffer )
delete[] _elitismBuffer;
}
// Sets new parameters for algorithm
void GaSimpleAlgorithm::SetAlgorithmParameters(const GaAlgorithmParams& parameters)
{
const GaSimpleAlgorithmParams& p = (const GaSimpleAlgorithmParams&)parameters;
// change size of elitism buffer
if( _parameters.GetElitism() != p.GetElitism() )
{
// free memory of old buffer
if( _elitismBuffer )
delete[] _elitismBuffer;
// make new buffer
if( p.GetElitism() > 0 )
_elitismBuffer = new GaChromosomePtr[ p.GetElitism() ];
else
_elitismBuffer = NULL;
}
// change parameters of multithreading
GaMultithreadingAlgorithm::SetAlgorithmParameters( parameters );
// save parameters
_parameters = (const GaSimpleAlgorithmParams&) parameters;
}
// Initialize the algorithm
void GaSimpleAlgorithm::Initialize()
{
_currentPopulation = GAPT_POPULATION_A;
_populations[ GAPT_POPULATION_A ]->InitializePopulation();
if( _populations[ GAPT_POPULATION_B ] )
delete _populations[ GAPT_POPULATION_B ];
_populations[ GAPT_POPULATION_B ] = _populations[ GAPT_POPULATION_A ]->Clone( false );
_buffers[ GAPT_POPULATION_B ] =
new GaCouplingResultSet( 0, new GaSelectionResultSet( 0, _populations[ GAPT_POPULATION_B ] ) );
}
// Step of control flow before workers start
void GaSimpleAlgorithm::BeforeWorkers()
{
GaPopulation* cp = _populations[ _currentPopulation ];
// preapare population for next generation
cp->NextGeneration();
// get buffers
GaCouplingResultSet* offsprings = _buffers[ _currentPopulation ];
GaSelectionResultSet* selection = &offsprings->GetSelectionResultSet();
// change the buffers' sizes if needed
selection->SelectedGroup().SetMaxSize( cp->GetConfiguration().Selection().GetParameters().GetSelectionSize() );
int couplingSize = cp->GetConfiguration().GetParameters().GetPopulationSize() - _parameters.GetElitism();
cp->GetConfiguration().Coupling().GetParameters().SetNumberOfOffsprings( couplingSize );
offsprings->SetNumberOfOffsprings( couplingSize );
// selection
cp->GetConfiguration().Selection().GetOperation()( *cp, cp->GetConfiguration().Selection().GetParameters(), *selection );
_savedChromosomes = 0;
}
// One step of work flow
void GaSimpleAlgorithm::WorkStep(int workerId)
{
GaPopulation* src = _populations[ _currentPopulation ];
GaPopulation* dst = _currentPopulation == GAPT_POPULATION_A ?
_populations[ GAPT_POPULATION_B ] : _populations[ GAPT_POPULATION_A ];
// get buffers
GaCouplingResultSet* offsprings = _buffers[ _currentPopulation ];
GaSelectionResultSet* selection = &offsprings->GetSelectionResultSet();
// elitism enabled?
if( !workerId && _parameters.GetElitism() > 0 )
// save the best chromosomes from old generation
_savedChromosomes = src->GetBestChromosomes( _elitismBuffer, 0, _parameters.GetElitism() );
// coupling
src->GetConfiguration().Coupling().GetOperation()( *src, *offsprings, src->GetConfiguration().Coupling().GetParameters(),
workerId, _parameters.GetNumberOfWorkers() );
}
// Step of control flow after workers finish
void GaSimpleAlgorithm::AfterWorkers()
{
static bool first = true;
// get buffer
GaCouplingResultSet* offsprings = _buffers[ _currentPopulation ];
// swap populations
GaPopulation* pp = _populations[ _currentPopulation ];
_currentPopulation = _currentPopulation == GAPT_POPULATION_A ? GAPT_POPULATION_B : GAPT_POPULATION_A;
GaPopulation* cp = _populations[ _currentPopulation ];
// insert new chromosomes
cp->InsertGroup( offsprings->GetOffspringsBuffer(), offsprings->GetNumberOfOffsprings() );
// copy best chromosomes from previous population
if( _savedChromosomes )
cp->InsertGroup( _elitismBuffer, _savedChromosomes );
// update statistics of population
cp->EndOfGeneration( *pp );
// clear old population
pp->Clear( true );
// rais "update statistics" event
_observers.StatisticUpdate( cp->GetStatistics(), *this );
// get best chromosome
int i;
cp->GetBestChromosomes( &i, 0, 1 );
GaChromosomePtr f = cp->GetAt( i ).GetChromosome();
// best chromosome changed?
if( first || ( *f == *_bestChromosome ) != 100 )
{
_bestChromosome = f;
first = false;
// raise "new best chromosome found" event
_observers.NewBestChromosome( *_bestChromosome, *this );
}
}
} // SimpleAlgorithms
} // Algorithm
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -