📄 custom_tcdf.m
字号:
function F = custom_tcdf(x,v)
% custom_tcdf - CDF of Students t distribution
%
% FORMAT: p = custom_tcdf(x, v)
%
% Input fields:
%
% x t-variate (Student's t has range (-Inf,Inf)
% v degrees of freedom (v > 0, non-integer d.f. accepted)
%
% Output fields:
%
% p CDF of t distribution with v d.f. at points x
%
% Note: this function has been copied from the SPM2 package published
% by the Wellcome Department, go here for details:
% http://www.fil.ion.ucl.ac.uk/spm/
% spm_Tcdf implements the Cumulative Distribution of the Students
% t-distribution.
%
% Definition:
%-----------------------------------------------------------------------
% The CDF F(x) of the Student's t-distribution with v degrees of
% freedom is the probability that a realisation of a t random variable
% X has value less than x; F(x)=Pr{X<x} for X~G(h,c). Student's
% t-distribution is defined for real x and positive integer v (See
% Evans et al., Ch37).
%
% This implementation is not restricted to whole (positive integer) df
% v, rather it will compute for any df v>0.
%
% Variate relationships: (Evans et al., Ch37 & 7)
%-----------------------------------------------------------------------
% The Student's t distribution with 1 degree of freedom is the Standard
% Cauchy distribution, which has a simple closed form CDF.
%
% Algorithm:
%-----------------------------------------------------------------------
% The CDF of the Student's t-distribution with v degrees of freedom
% is related to the incomplete beta function by:
% Pr(|X|<x) = betainc(v/(v+x^2),v/2,1/2)
% so
% { betainc(v/(v+x^2),v/2,1/2) / 2 for x<0
% F(x) = | 0.5 for x=0
% { 1 - betainc(v/(v+x^2),v/2,1/2) / 2 for x>0
%
% See Abramowitz & Stegun, 26.5.27 & 26.7.1; Press et al., Sec6.4 for
% definitions of the incomplete beta function. The relationship is
% easily verified by substituting for v/(v+x^2) in the integral of the
% incomplete beta function.
%
% MatLab's implementation of the incomplete beta function is used.
%
%
% References:
%-----------------------------------------------------------------------
% Evans M, Hastings N, Peacock B (1993)
% "Statistical Distributions"
% 2nd Ed. Wiley, New York
%
% Abramowitz M, Stegun IA, (1964)
% "Handbook of Mathematical Functions"
% US Government Printing Office
%
% Press WH, Teukolsky SA, Vetterling AT, Flannery BP (1992)
% "Numerical Recipes in C"
% Cambridge
%
%_______________________________________________________________________
% @(#)spm_Tcdf.m 2.2 Andrew Holmes 99/04/26
% Version: v0.6c
% Build: 7012416
% Date: Jan-24 2007, 4:10 PM CET
% Author: Andrew Holmes, SPM2
% URL/Info: http://www.fil.ion.ucl.ac.uk/spm/
% argument check
if nargin < 2 || ...
~isa(x, 'double') || ...
~isa(v, 'double') || ...
isempty(v) || ...
any(isnan(x(:))) || ...
any(isinf(v(:)) | isnan(v(:)) | v(:) < 0)
error( ...
'BVQXtools:BadArgument', ...
'Missing or invalid argument given.' ...
);
end
if isempty(x)
F = [];
return;
end
osize = size(x);
if numel(x) == 1 && ...
numel(v) > 1
osize = size(v);
end
x = x(:);
v = v(:);
if numel(v) ~= numel(x) && ...
numel(v) ~= 1 && ...
numel(x) ~= 1
error( ...
'BVQXtools:SizeMismatch', ...
'Invalid number of elements in v.' ...
);
end
if numel(x) ~= numel(v)
if numel(x) == 1
x = repmat(x, size(v));
else
v = repmat(v, size(x));
end
end
% initialize output
F = zeros(numel(x), 1);
% special case: f is 0.5 when x == 0
F(x == 0) = 0.5;
% special case: Standard Cauchy distribution when v == 1
v1 = v == 1;
F(v1) = 0.5 + atan(x(v1)) / pi;
% compute where defined and no special case
d = find((~v1) & (x ~= 0));
if isempty(d)
F = reshape(F, osize);
return
end
xpos = d(x(d) > 0);
if ~isempty(xpos)
if numel(v) == 1
F(xpos) = 1 - 0.5 * betainc(v ./ ...
(v + x(xpos) .^ 2), v / 2, 1 / 2);
else
F(xpos) = 1 - 0.5 * betainc(v(xpos) ./ ...
(v(xpos) + x(xpos) .^ 2), v(xpos) ./ 2, 1 / 2);
end
end
xpos = find(x(d) < 0);
if ~isempty(xpos)
if numel(v) == 1
F(xpos) = 0.5 * betainc(v ./ ...
(v + x(xpos) .^ 2), v ./ 2, 1 / 2);
else
F(xpos) = 0.5 * betainc(v(xpos) ./ ...
(v(xpos) + x(xpos) .^ 2), v(xpos) ./ 2, 1 / 2);
end
end
F = reshape(F, osize);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -