⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 清华大学学报990203.htm

📁 书店的管理系统。不错的一个源程序。提供给大家。
💻 HTM
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0076)http://www.i-power.com.cn/ipower/library/qhdxxb-e/qhdx99/qhdx9902/990203.htm -->
<HTML><HEAD><TITLE>清华大学学报990203</TITLE>
<META content="text/html; charset=gb2312" http-equiv=Content-Type>
<META content="MSHTML 5.00.2314.1000" name=GENERATOR></HEAD>
<BODY bgColor=#ffffff link=#000000>
<TABLE border=0 cellPadding=0 cellSpacing=0 width="90%">
  <TBODY>
  <TR>
    <TD align=middle><A href="http://www.i-power.com.cn/ipower/"><IMG 
      alt="logo.gif (3178 bytes)" border=0 height=26 
      src="清华大学学报990203.files/logo.gif" width=174></A></TD>
    <TD align=middle><A 
      href="http://www.i-power.com.cn/ipower/library/qhdxxb-e/index.htm"><STRONG><FONT 
      face=宋体 size=4>清华大学学报</FONT></STRONG></A><BR><STRONG><FONT face=System 
      size=4>TSINGHUA SCIENCE AND TECHNOLOGY</FONT></STRONG><BR><FONT face=宋体 
      size=2>1999年 第4卷 第2期 Vol.4 No.2 1999</FONT></TD>
    <TD align=middle><A 
      href="http://www.i-power.com.cn/ipower/library/index.htm"><IMG 
      alt="qklogo.gif (1778 bytes)" border=0 height=26 
      src="清华大学学报990203.files/qklogo.gif" width=96></A></TD></TR>
  <TR>
    <TD align=middle colSpan=3>
      <HR>
    </TD></TR></TBODY></TABLE>
<TABLE border=0 cellPadding=0 cellSpacing=0 width="90%">
  <TBODY>
  <TR>
    <TD><FONT size=3>
      <P align=center></FONT><STRONG><FONT face="Times New Roman" 
      size=5>Consistent Algorithm for Multi-value Constraint with <BR>Continuous 
      Variables*</FONT></STRONG></P>
      <P align=center><FONT face="Times New Roman" size=3>CHANG 
      Tianqing(</FONT><FONT size=3>常天庆</FONT><FONT face="Times New Roman" 
      size=3>), LI Jingyi(</FONT><FONT size=3>李敬逸</FONT><FONT 
      face="Times New Roman" size=3>), XU Wensheng(</FONT><FONT 
      size=3>徐文胜</FONT><FONT face="Times New Roman" size=3>), <BR>XIONG 
      Guangleng(</FONT><FONT size=3>熊光楞</FONT><FONT face="Times New Roman" 
      size=3>)</FONT><FONT size=3></P>
      <P align=center><FONT face="Times New Roman">Department of Automation, 
      Tsinghua University, Beijing 100084</FONT></P>
      <P align=left><FONT 
      face="Times New Roman"><STRONG>Abstract</STRONG></FONT> <FONT 
      face="Times New Roman">Mature algorithms for the Constraint Satisfaction 
      Problem (CSP) of binary constraint with discrete variables have already 
      been obtained for the application. For the instance of multi-value 
      constraint with continuous variables, the approach will be quite different 
      and the difficulty of settling will aggrandize a lot. This paper presents 
      the algorithm for realizing global consistency of continuous variable. And 
      this algorithm can be applied to multi-value constraint. <BR><STRONG>Key 
      words </STRONG></FONT> <FONT face="Times New Roman">artificial 
      intelligence; constraint satisfaction problem; consistency 
      problem</FONT></P>
      <P align=left></FONT><STRONG><FONT face="Times New Roman" 
      size=4>Introduction<BR></FONT><FONT size=3>  </FONT></STRONG><FONT 
      face="Times New Roman" size=3>The Constraint Satisfaction Problem (CSP) 
      was first developed for settling the constraint between discrete 
      variables. Many algorithms given out for improving the solving efficiency 
      of CSP were limited to binary constraint. In product development process 
      in Concurrent Engineering, we frequently meet with constraints with 
      multiple continuous variables. Under this situation, new nodus appears in 
      solving CSP. For example, while figuring out the CSP of binary constraint 
      with discrete variables, it is relatively simple to find out the value of 
      these two constrained variables from their limited value sets. And it is 
      comparatively easy to eliminate redundant values in the value set which 
      can not satisfy the constraint. So most attention is focused on finding 
      out the optimal sequence of the variables to be settled during the solving 
      process. However, under the instance of multi-value constraint with 
      continuous variables, it is rather difficult to find out the feasible 
      solution of the variables being constrained. And certain efficient 
      algorithm dealing with this problem has not been found yet. It is obvious 
      that how to find out the feasible solution of the variables being 
      constrained is the foundation of settling CSP and has significant 
      importance. </FONT><FONT size=3></P>
      <P align=left></FONT><STRONG><FONT face="Times New Roman" 
      size=4>1</FONT><FONT size=4> </FONT><FONT face="Times New Roman" 
      size=4>Correlative Definition<BR></FONT></STRONG><FONT 
      size=3>  </FONT><FONT face="Times New Roman" size=3><STRONG>Definition 1 
      (CSP)</STRONG></FONT><FONT size=3> </FONT><FONT face="Times New Roman" 
      size=3>CSP is a three-tuple problem specified by </FONT><FONT 
      size=3>(</FONT><FONT face="Times New Roman" size=3>X,D,C</FONT><FONT 
      size=3>)</FONT><FONT face="Times New Roman" size=3>. It involves a set of 
      n variables X<SUB>1</SUB>,X<SUB>2</SUB>,</FONT><FONT size=3>…</FONT><FONT 
      face="Times New Roman" size=3>,X<SUB>n</SUB>(each variable X<SUB>i</SUB> 
      has its domain D<SUB>i</SUB>) and a set of m constraints 
      C<SUB>1</SUB>,C<SUB>2</SUB>,</FONT><FONT size=3>…</FONT><FONT 
      face="Times New Roman" size=3>,C<SUB>m</SUB>. Each constraint can be 
      divided into two parts: variable set 
      V(C<SUB>i</SUB>)={X<SUB>i1</SUB>,</FONT><FONT size=3>…</FONT><FONT 
      face="Times New Roman" size=3>,X<SUB>ij</SUB>} and relationship set 
      R(C<SUB>i</SUB>)=R{X<SUB>i1</SUB>,</FONT><FONT size=3>…</FONT><FONT 
      face="Times New Roman" size=3>,X<SUB>ij</SUB>}</FONT><IMG 
      alt="wpe3A.jpg (744 bytes)" height=16 src="清华大学学报990203.files/9902031.jpg" 
      width=17><FONT face="Times New Roman" size=3>D<SUB>i1</SUB>×</FONT><FONT 
      size=3>…</FONT><FONT face="Times New Roman" size=3>×D<SUB>ij</SUB>. All 
      solutions of the constraint network can be represented as</FONT></P><FONT 
      size=3>
      <P align=center><IMG alt="3t-1.gif (1115 bytes)" height=57 
      src="清华大学学报990203.files/3t-1.gif" width=293></P>
      <P align=left><FONT face="Times New Roman">Here</FONT><IMG 
      alt="3t-2.gif (788 bytes)" height=33 src="清华大学学报990203.files/3t-2.gif" 
      width=281><FONT face="Times New Roman">, <IMG alt="wpe3B.jpg (796 bytes)" 
      height=20 src="清华大学学报990203.files/9902032.jpg" width=19> is the expansion 
      of <IMG alt="wpe3C.jpg (853 bytes)" height=25 
      src="清华大学学报990203.files/9902033.jpg" width=27>} represents the projection 
      of variable subset U={U<SUB>1</SUB>,</FONT>…<FONT 
      face="Times New Roman">,U<SUB>m</SUB>} on relationship k. The objective is 
      to determine whether this problem has solution, find out its single or 
      multiple solutions and solve correlative problems.<BR></FONT>  <FONT 
      face="Times New Roman">Traditional CSP mainly discusses the problem of 
      discrete variable with finite value domain under binary constraint. The 
      corresponding content discussed in this paper is about continuous variable 
      with a series of intervals. Constraints are not limited to binary 
      constraint.<BR></FONT>  <FONT face="Times New Roman">Backtracking is the 
      basic method of solving CSP. In order to reduce the time of backtracking, 
      preprocessing is always needed before backtracking. The basic principle of 
      preprocessing is to eliminate those elements that can not be the solution 
      in the value domain of the variables. Generally we use global consistency 
      and local consistency to represent the degree of simplicity of value 
      domain.<BR></FONT>  <FONT face="Times New Roman"><STRONG>Definition 2 
      (Local Consistency)</STRONG></FONT> <FONT face="Times New Roman">Suppose 
      C<SUB>j</SUB>(j=1,</FONT>…<FONT face="Times New Roman">,m) is a constraint 
      which has direct link with variable X<SUB>i</SUB>. If for each value 
      x<SUB>i</SUB> in value domain of variable X<SUB>i</SUB>, we can always 
      find out a group of variable values (x<SUB>1</SUB></FONT>∈<FONT 
      face="Times New Roman">X<SUB>1</SUB>,</FONT>…<FONT 
      face="Times New Roman">,x<SUB>i</SUB></FONT>∈<FONT 
      face="Times New Roman">X<SUB>i</SUB>,</FONT>…<FONT 
      face="Times New Roman">,x<SUB>n</SUB></FONT>∈<FONT 
      face="Times New Roman">X<SUB>n</SUB>) which can satisfy constraints 
      C<SUB>j</SUB>(j=1,</FONT>…<FONT face="Times New Roman">,p,p</FONT>≤<FONT 
      face="Times New Roman">m), then variable X<SUB>i</SUB> is local 
      consistent. And if all variables are local consistent, then the 
      corresponding CSP is local consistent.<BR></FONT>  <FONT 
      face="Times New Roman">Generally speaking, a CSP has not eliminated all 
      redundant portions when it reaches local consistency. Global consistency 
      has to be satisfied.<BR></FONT>  <FONT 
      face="Times New Roman"><STRONG>Definition 3 (Global 
      Consistency)</STRONG></FONT> <FONT face="Times New Roman">If for each 
      value x<SUB>i</SUB> in value domain of variable X<SUB>i</SUB>, we can 
      always find out a group of variable values (x<SUB>1</SUB></FONT>∈<FONT 
      face="Times New Roman">X<SUB>1</SUB>,</FONT>…<FONT 
      face="Times New Roman">,x<SUB>i</SUB></FONT>∈<FONT 
      face="Times New Roman">X<SUB>i</SUB>,</FONT>…<FONT 
      face="Times New Roman">,x<SUB>n</SUB></FONT>∈<FONT 
      face="Times New Roman">X<SUB>n</SUB>) which can satisfy all constraints 
      C<SUB>j</SUB>(j=1,</FONT>…<FONT face="Times New Roman">,m) of CSP, then 
      variable X<SUB>i</SUB> is global consistent. If all variables are global 
      consistent, then the corresponding CSP is global 
      consistent.<BR></FONT>  <FONT face="Times New Roman">The consistency of 
      CSP can be realized through the following algorithm.<BR></FONT>  <FONT 
      face="Times New Roman"><STRONG>Algorithm 1 (Consistency algorithm of 
      CSP)</STRONG><BR></FONT>  <FONT 
      face="Times New Roman">BEGIN<BR></FONT>    <FONT 
      face="Times New Roman">WHILE changed=TRUE DO<BR></FONT>      <FONT 
      face="Times New Roman">changed=FAIL<BR></FONT>      <FONT 
      face="Times New Roman">FOR j=1 TO r by 1 DO<BR></FONT>        <FONT 
      face="Times New Roman">FOR i=1 TO n by 1 DO<BR></FONT>         <FONT 
      face="Times New Roman">Compute the consistent interval of variable 
      X<SUB>i</SUB> under the constraint group C<SUB>j</SUB>(j=p,</FONT>…<FONT 
      face="Times New Roman">,q,<BR></FONT>         <FONT 
      face="Times New Roman">1</FONT>≤<FONT 
      face="Times New Roman">p</FONT>≤<FONT 
      face="Times New Roman">q</FONT>≤<FONT face="Times New Roman">m) while the 
      value domains are (X<SUB>1</SUB>,</FONT>…<FONT 
      face="Times New Roman">,X<SUB>i-1</SUB>,X<SUB>i+1</SUB>,</FONT>…<FONT 
      face="Times New Roman">,X<SUB>n</SUB>).IF the intervals 
      of<BR></FONT>          <FONT face="Times New Roman">X<SUB>i</SUB> are 
      changed THEN changed=TRUE<BR></FONT>        <FONT 
      face="Times New Roman">Use new interval to substitute the 
      former.<BR></FONT>      <FONT face="Times New Roman">END/* of WHILE 
      */<BR></FONT>    <FONT face="Times New Roman">END<BR></FONT>  <FONT 
      face="Times New Roman">This algorithm divides the constraints into r 
      groups. If r=m, each group has only one constraint, the algorithm can 
      reach local consistency. If r=1, then the algorithm can reach global 
      consistency. Computing the consistent interval is the core of the 
      algorithm. This paper separately deals with it as one problem. 
      <BR></FONT>  <FONT face="Times New Roman"><STRONG>Problem 
      1</STRONG></FONT> <FONT face="Times New Roman">For n variables 
      X<SUB>i</SUB>(i=1,</FONT>…<FONT face="Times New Roman">,n)</FONT>,<FONT 
      face="Times New Roman">their respective value domains are 
      a<SUB>i</SUB></FONT>≤<FONT 
      face="Times New Roman">X<SUB>i</SUB></FONT>≤<FONT 
      face="Times New Roman">b<SUB>i</SUB>, their corresponding constraints are 
      c<SUB>j</SUB>(X<SUB>i</SUB>,</FONT>…<FONT 
      face="Times New Roman">,X<SUB>n</SUB>)(j=1,</FONT>…<FONT 
      face="Times New Roman">,p). How to seek the consistent interval 
      </FONT>[<IMG alt="wpe3D.jpg (826 bytes)" height=27 
      src="清华大学学报990203.files/9902034.jpg" width=32><FONT 
      face="Times New Roman">,</FONT><IMG alt="wpe3E.jpg (855 bytes)" height=27 
      src="清华大学学报990203.files/9902035.jpg" width=33>]<FONT 
      face="Times New Roman">(k</FONT>≥<FONT face="Times New Roman">1) of 
      X<SUB>n</SUB> corresponding to domains a<SUB>i</SUB></FONT>≤<FONT 
      face="Times New Roman">X<SUB>i</SUB></FONT>≤<FONT 
      face="Times New Roman">b<SUB>i</SUB>(i=1,</FONT>…<FONT 
      face="Times New Roman">,n) and constraints c<SUB>j</SUB>(j=1,</FONT>…<FONT 
      face="Times New Roman">,p)?<BR></FONT>  <FONT face="Times New Roman">Owing 
      to the importance of this problem in CSP, many scholars have done thorough 
      research in this area. Davis</FONT><SUP>[<FONT 
      face="Times New Roman">1</FONT>]</SUP> <FONT face="Times New Roman">gave 
      out the interval algorithm of Waltz</FONT>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -