📄 cmatrix.h
字号:
/// \brief Loads a binary compressed matrix that was saved using the MTX_SaveCompressed function.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_ReadCompressed( MTX *M, const char *path );
/// \brief Get attributes of the compressed file.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_GetCompressedFileAttributes(
const char *path,
unsigned* nrows,
unsigned* ncols,
BOOL* isReal
);
/// \brief Read an ASCII matrix data file and save it using MTX_SaveCompressed.
/// ADVANCED EDITION ONLY!
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_LoadAndSave( const char* infilepath, const char* outfilepath );
/// \brief Read an ASCII matrix data file and save it using MTX_SaveCompressed.
/// This version saves the data to the same base filename and uses the .mtx extension.
/// ADVANCED EDITION ONLY!
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_LoadAndSaveQuick( const char* infilepath );
/// \brief Alter the matrix, M, so that its data is within the startTime to the startTime+duration
/// and compensate for any rollovers in the time system (e.g. GPS time in seconds rolls over
/// at 604800.0 s). This function assumes that time is one of the matrix columns and requires
/// this index, the timeColumn.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_TimeWindow(
MTX* M, //!< Matrix to be altered
const unsigned timeColumn, //!< The column containing time
const double startTime, //!< The specified start time (inclusive)
const double duration, //!< The duration to include
const double rolloverTime ); //!< The potential time at which system time rolls over
/// \brief Alter the matrix, M, so that its data is within [startTime endTime].
/// This function assumes that time is one of the matrix columns and requires
/// this index, the timeColumn.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_TimeLimit(
MTX* M, //!< Matrix to be altered
const unsigned timeColumn, //!< The column containing time
const double startTime, //!< The specified start time (inclusive)
const double endTime ); //!< The duration to include
/// \brief This function matches matrices in time with specified precision
/// where time is a column of each matrix. This function also
/// allows time to rollover at a specified interval.
///
/// precision 0 = match to whole number \n
/// precision 1 = match to nearest 0.1 \n
/// precision 2 = match to nearest 0.01 \n
/// etc. \n
/// rolloverTime examples \n
/// GPS time of week (s): rolloverTime= 604800.0 \n
/// hours : rolloverTime = 24.0 \n
/// minutes : rolloverTime = 60.0 \n
///
/// The time data must be non-decreasing but the time may rollover
/// by the specified amount.
/// e.g. rolloverTime = 60.0 \n
/// 0,1,2,3,4,...59,60,1,2,5,10,60,1,2,3... \n
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_TimeMatch(
MTX *A, //!< The matrix with interpolation times
const unsigned timeColumnA, //!< The zero based column index for matrix A
MTX *B, //!< The matrix to be interpolated
const unsigned timeColumnB, //!< The zero based column index for matrix B
const unsigned precision, //!< The rounding precision used for time matching, 0 = whole, 1 = 0.1, 2 = 0.01, etc
const double rolloverTime //!< The rollover time, e.g. 60 s for minute based timing, 0.0 means rollovers not allowed
);
/// \brief This function interpolates Matrix B values by the times defined
/// in the column in Matrix A. Time must be increasing but times can
/// rollover with the specified rolloverTime.
///
/// This function returns A and B with the same number of rows and
/// time aligned time columns.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_Interpolate(
MTX *A, //!< The matrix with interpolation times
const unsigned timeColumnA, //!< The zero based column index for matrix A
MTX *B, //!< The matrix to be interpolated
const unsigned timeColumnB, //!< The zero based column index for matrix B
const double maxInterpolationInterval, //!< The largest interpolation interval allowed
const double rolloverTime //!< The rollover time, e.g. 60 s for minute based timing, 0.0 means rollovers not allowed
);
/// \brief Compute the inverse, 1.0/x, inplace for each element
/// of the matrix.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_Inv( MTX *src );
/// \brief Compute the inplace inverse of the matrix.
/// Uses fast closed form solutions for:
/// Only for: 1x1, 2x2, 3x3
///
/// If the matrix is singular, the original matrix is unchanged.
///
/// \return TRUE if successful, FALSE if empty or has dimensions larger
/// than 3x3, false if singular or not square
BOOL MTX_InvertInPlaceClosedForm( MTX *M );
/// \brief Compute the inplace inverse of a postive definite matrix.
///
/// The matrix is first tested to determine if it is a symmetric
/// positive-definite matrix. If so, Cholesky decomposition is used
/// to facilitate the inversion of a lower triangular matrix. If the
/// matrix is not symmetric and positive-definite robust inversion
/// using gaussing elimination is attempted.
///
/// 3x3 matrices or smaller dimensions are computed using
/// MTX_InvertInPlaceClosedForm.
///
/// If the matrix is singular, the original matrix is unchanged.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_InvertInPlace( MTX *M );
/// \brief Perfroms an inplace inverse using Gaussian Elimination methods.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_InvertInPlaceRobust( MTX *M );
/// \brief Computes a moving average using N lead samples and M lagging samples
/// for the specified column and stores it in dst.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_ColumnMovAvg( const MTX *src, const unsigned col, const unsigned lead, const unsigned lag, MTX *dst );
/// \brief Computes a moving average using N lead samples and M lagging samples
/// for the matrix and stores it in dst.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_MovAvg( const MTX *src, const unsigned lead, const unsigned lag, MTX *dst );
/// \brief Computes: InvATA = inverse( transpose(A) * A ).
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_ATAInverse( const MTX *A, MTX *InvATA );
/// \brief Compute the inplace inverse of a unit lower triangular matrix.
/// An example unit lower triangular matrix is: \n
/// A = [ 1 0 0; \n
/// -2 2 0; \n
/// 4 -3 3 ]; with \n
/// inv(A) = [ 1 0 0; \n
/// 1 1/2 0; \n
/// -1/3 1/2 1/3 ]; \n
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_LowerTriangularInverseInplace( MTX *src );
/// \brief Computes the determinatnt of the square matrix M.
/// If the matrix is real, only the real value, re is set, im = 0.
/// If the matrix is complex, both re and im are set.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_Det( const MTX *M, double *re, double *im );
/// \brief LU factorization.
/// Performs a factorization to produce a unit lower triangular matrix, L,
/// an upper triangular matrix, U, and permutation matrix P so that
/// P*X = L*U.
/// P, L and U are copmuted correctly if IsFullRank is set to true.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_LUFactorization( const MTX *src, BOOL *IsFullRank, MTX *P, MTX *L, MTX *U );
/// \brief Retrieve the elements of the matrix specified by the index vectors.
/// The index vectors must be nx1 real vectors.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_IndexedValues( const MTX *src, const MTX *row_index, const MTX *col_index, MTX *dst );
/// \brief Set the elements of the matrix specified by the index vectors.
/// The index vectors must be nx1 real vectors.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_SetIndexedValues( MTX *dst, const MTX *row_index, const MTX *col_index, const MTX *src );
/// \brief Compute the Fast Fourier Transform of each columns in the src matrix and
/// store it in the dst matrix.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_FFT( const MTX *src, MTX *dst );
/// \brief Compute the inverse Fast Fourier Transform of each columns in the src matrix and
/// store it in the dst matrix.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_IFFT( const MTX *src, MTX *dst );
/// \brief Compute the inplace Fast Fourier Transform of each column of the matrix.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_FFT_Inplace( MTX *src);
/// \brief Compute the inplace inverse Fast Fourier Transform of each column of the matrix.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_IFFT_Inplace( MTX *src);
/// \brief Compute the sine of each element in the matrix. Assumes elements are radians.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_sin( MTX *src );
/// \brief Compute the sin(pi*x)/(pi*) of each element in the matrix.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_sinc( MTX *src );
/// \brief Compute the hyperbolic sine of each element in the matrix. Assumes elements are radians.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_sinh( MTX *src );
/// \brief Compute the inverse hyperbolic sine of each element in the matrix.
/// Results in radians.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_asinh( MTX *src );
/// \brief Compute the cosine of each element in the matrix. Assumes elements are radians.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_cos( MTX *src );
/// \brief Compute the hyperbolic cosine of each element in the matrix. Assumes elements are radians.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_cosh( MTX *src );
/// \brief Compute the inverse hyperbolic cosine of each element in the matrix.
/// Results in radians.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_acosh( MTX *src );
/// \brief Compute the tangent of each element in the matrix. Assumes elements are radians.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_tan( MTX *src );
/// \brief Compute the hyperbolic tangent of each element in the matrix. Assumes elements are radians.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_tanh( MTX *src );
/// \brief Compute the inverse hyperbolic tangent of each element in the matrix.
/// Results in radians.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_atanh( MTX *src );
/// \brief Compute the cotangent of each element in the matrix. Assumes elements are radians.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_cot( MTX *src );
/// \brief Compute the hyperbolic cotangent of each element in the matrix. Assumes elements are radians.
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_coth( MTX *src );
/// \brief Create a column vector [start:increment:end) beginning at start
/// with step size of increment until less than or equal to end.
/// Note that arguments must be real scalars. \n
/// e.g. a = 2:2:9 = [2; 4; 6; 8;] \n
/// e.g. b = 2:-2:-9 = [2; 0; -2; -4; -6; -9;] \n
///
/// \return TRUE if successful, FALSE otherwise.
BOOL MTX_Colon( MTX *dst, const double start, const double increment, const double end );
/** \brief A very efficient method to remove rows and columns from the matrix.
*
* \code
* MTX A;
* unsigned rows[2];
* unsigned cols[2];
* MTX_Init(&A);
* MTX_Calloc( &A, 4, 4 );
* MTX_Identity( &A );
* A.data[0][0] = 100.0;
* A.data[2][1] = 10.0;
* A.data[1][2] = 20.0;
* // remove the first row and column and the third row and column.
* rows[0] = 0;
* rows[1] = 2;
* cols[0] = 0;
* cols[1] = 2;
* MTX_RemoveRowsAndColumns( &A, 2, (unsigned*)rows, 2 (unsigned*)cols );
* // A is now a 2x2 identity matrix.
* \endcode
*
* \return TRUE if successful, FALSE otherwise.
*/
BOOL MTX_RemoveRowsAndColumns(
MTX *src, //!< The pointer to the matrix object.
const unsigned nrows, //!< The number of rows to remove (the length of the rows array).
const unsigned rows[], //!< The array of row indices to remove.
const unsigned ncols, //!< The number of columns to remove (the length of hte cols array).
const unsigned cols[]
);
#ifdef ___MTX_RANDN_READY
/** \brief Produce a matrix that is composed of pseudo-random numbers.
* The seed state is based on the system clock or alternatively by the seed
* parameter, a positive integer can set the seed state upon generation.
* Elements are chosen from a normal distribution with mean zero, variance of
* one and standard of deviation one.
*
* \code
* MTX A;
* MTX_Init(&A);
* MTX_randn( 1000, 1 ); // create a random vector of 1000 rows by 1 column.
* \endcode
*
* \return TRUE if successful, FALSE otherwise.
*/
BOOL MTX_randn(
MTX* M,
const unsigned nrows,
const unsigned ncols,
const BOOL useSeed,
const unsigned seed
);
#endif
#ifdef __cplusplus
}
#endif
#endif // ZENUATICS_MTX_H
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -