📄 geneticalgorithm.cpp
字号:
{
int j;
for (j = 1; j <= repcount; j++) printf("%s", ch);
}
void CGeneticAlgorithm::skip(FILE *outfp,int skipcount)
{
int j;
for (j = 1; j <= skipcount; j++) printf("\n");
}
void CGeneticAlgorithm::objfunc(struct individual *critter) /* 计算适应度函数值 */
{
unsigned mask=1;
unsigned bitpos;
unsigned tp;
double bitpow ;
int j, k, stop;
critter->varible = 0.0;
for(k = 0; k < chromsize; k++)
{
if(k == (chromsize-1))
stop = lchrom-(k*(8*sizeof(unsigned)));
else
stop =8*sizeof(unsigned);
tp = critter->chrom[k];
for(j = 0; j < stop; j++)
{
bitpos = j + (8*sizeof(unsigned))*k;
if((tp&mask) == 1)
{
bitpow = pow(2.0,(double) bitpos);
critter->varible = critter->varible + bitpow;
}
tp = tp>>1;
}
}
critter->varible =-1+critter->varible*3/(pow(2.0,(double)lchrom)-1);
//critter->fitness =critter->varible*sin(critter->varible*10*atan(1.0)*4)+2.0;
critter->fitness =-1*(critter->varible-1.6)*(critter->varible-1.4)+20;
}
void CGeneticAlgorithm::mutation(unsigned *child) /*变异操作*/
{
int j, k, stop;
unsigned mask, temp = 1;
for(k = 0; k < chromsize; k++)
{
mask = 0;
if(k == (chromsize-1))
stop = lchrom - (k*(8*sizeof(unsigned)));
else
stop = 8*sizeof(unsigned);
for(j = 0; j < stop; j++)
{
if(flip(pmutation))
{
mask = mask|(temp<<j);
nmutation++;
}
}
child[k] = child[k]^mask;
}
}
int CGeneticAlgorithm::crossover (unsigned *parent1, unsigned *parent2, unsigned *child1, unsigned *child2)
/* 由两个父个体交叉产生两个子个体 */
{
int j, jcross, k;
unsigned mask, temp;
if(flip(pcross))
{
jcross = rnd(1 ,(lchrom - 1));/* Cross between 1 and l-1 */
//因为我们程序中一个基因是两个位点表示的,所以要将jcross变为偶数
if(jcross%2)
{
jcross++;
}
ncross++;
for(k = 1; k <= chromsize; k++)
{
if(jcross >= (k*32))
{
child1[k-1] = parent1[k-1];
child2[k-1] = parent2[k-1];
}
else if((jcross < (k*32)) && (jcross > ((k-1)*32)))
{
mask = 1;
for(j = 1; j <= (jcross-1-((k-1)*32)); j++)
{
temp = 1;
mask = mask<<1;
mask = mask|temp;
}
child1[k-1] = (parent1[k-1]&mask)|(parent2[k-1]&(~mask));
child2[k-1] = (parent1[k-1]&(~mask))|(parent2[k-1]&mask);
}
else
{
child1[k-1] = parent2[k-1];
child2[k-1] = parent1[k-1];
}
}
}
else
{
for(k = 0; k < chromsize; k++)
{
child1[k] = parent1[k];
child2[k] = parent2[k];
}
jcross = 0;
}
return(jcross);
}
void CGeneticAlgorithm::advance_random() /* 产生55个随机数 */
{
int j1;
double new_random;
for(j1 = 0; j1 < 24; j1++)
{
new_random = oldrand[j1] - oldrand[j1+31];
if(new_random < 0.0) new_random = new_random + 1.0;
oldrand[j1] = new_random;
}
for(j1 = 24; j1 < 55; j1++)
{
new_random = oldrand [j1] - oldrand [j1-24];
if(new_random < 0.0) new_random = new_random + 1.0;
oldrand[j1] = new_random;
}
}
int CGeneticAlgorithm::flip(float prob) /* 以一定概率产生0或1 */
{
if(randomperc() <= prob)
return(1);
else
return(0);
}
void CGeneticAlgorithm::randomize() /* 设定随机数种子并初始化随机数发生器 */
{
float randomseed;
int j1;
for(j1=0; j1<=54; j1++)
oldrand[j1] = 0.0;
jrand=0;
do
{
// printf("随机数种子[0-1]:");
// scanf("%f", &randomseed);
randomseed = 0.5;
}
while((randomseed < 0.0) || (randomseed > 1.0));
warmup_random(randomseed);
}
double CGeneticAlgorithm::randomnormaldeviate() /* 产生随机标准差 */
{
//double sqrt(), log(), sin(), cos();
double t, rndx1;
if(rndcalcflag)
{ rndx1 = sqrt(- 2.0*log((double) randomperc()));
t = 6.2831853072 * (double) randomperc();
rndx2 = rndx1 * sin(t);
rndcalcflag = 0;
return(rndx1 * cos(t));
}
else
{
rndcalcflag = 1;
return(rndx2);
}
}
float CGeneticAlgorithm::randomperc() /*与库函数random()作用相同, 产生[0,1]之间一个随机数 */
{
jrand++;
if(jrand >= 55)
{
jrand = 1;
advance_random();
}
return((float) oldrand[jrand]);
}
int CGeneticAlgorithm::rnd(int low, int high) /*在整数low和high之间产生一个随机整数*/
{
int i;
if(low >= high)
i = low;
else
{
i =(int)((randomperc() * (high - low + 1)) + low);
if(i > high) i = high;
}
return(i);
}
void CGeneticAlgorithm::warmup_random(float random_seed) /* 初始化随机数发生器*/
{
int j1, ii;
double new_random, prev_random;
oldrand[54] = random_seed;
new_random = 0.000000001;
prev_random = random_seed;
for(j1 = 1 ; j1 <= 54; j1++)
{
ii = (21*j1)%54;
oldrand[ii] = new_random;
new_random = prev_random-new_random;
if(new_random<0.0) new_random = new_random + 1.0;
prev_random = oldrand[ii];
}
advance_random();
advance_random();
advance_random();
jrand = 0;
}
// 设置种群的大小
void CGeneticAlgorithm::SetPopsize(int iVar)
{
this->popsize = iVar;
if((popsize%2) != 0)
{
// 种群大小已设置为偶数
popsize++;
};
}
// 设置染色体长度
void CGeneticAlgorithm::SetLchrom(int iVar)
{
this->lchrom = iVar;
}
// 设置最大世代数
void CGeneticAlgorithm::SetMaxgen(int iVar)
{
this->maxgen = iVar;
}
// 设置交叉率
void CGeneticAlgorithm::SetCross(float fVar)
{
this->pcross = fVar;
}
// 设置变异率
void CGeneticAlgorithm::SetMutation(float fVar)
{
this->pmutation = fVar;
}
// 运行遗传算法
int CGeneticAlgorithm::Run(void)
{
int i;
float fTemp;
bool bStop;
float fFitness[10];//用于存放最近十次的适应度值,如果最后十次的适应度值相差很小,则可以提前终止运行,并将当前的迭代次数返回
memset(fFitness,0,sizeof(int)*10);
struct individual *temp;
int gen;
for(gen=0; gen<maxgen; gen++)
{
// printf("\n 当前代为 %d, 共 %d 代\n",gen,maxgen);
/* 产生新一代 */
this->generation();
/* 计算新一代种群的适应度统计数据 */
this->statistics(this->newpop);
/* 输出新一代统计数据 */
// this->report();
temp = this->oldpop;
this->oldpop = this->newpop;
this->newpop = temp;
//一下是建立一个模型,当目标方程满足一定条件时,终止优化过程
fFitness[gen%10] = avg;
if(gen<10)
{
continue;
}
fTemp = 0;
for(i = 0; i<10 ;i++)
{
fTemp += fFitness[i];
}
fTemp /= 10;
bStop = true;
for(i = 0; i<10;i++)
{
if(abs(fTemp - fFitness[i])/fTemp>0.01)
{
bStop = false;
}
}
if(bStop)
return gen;
}
return maxgen;
}
// 设置出示种群个体中染色体中1出现的概率
void CGeneticAlgorithm::SetInitPop(float fVar)
{
this->fInitPop = fVar;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -