📄 regress.m
字号:
function [b,bint,r,rint,stats] = regress(y,X,alpha)
%REGRESS Multiple linear regression using least squares.
% b = REGRESS(y,X) returns the vector of regression coefficients, b,
% in the linear model y = Xb, (X is an nxp matrix, y is the nx1
% vector of observations).
%
% [B,BINT,R,RINT,STATS] = REGRESS(y,X,alpha) uses the input, ALPHA
% to calculate 100(1 - ALPHA) confidence intervals for B and the
% residual vector, R, in BINT and RINT respectively. The vector
% STATS contains the R-square statistic along with the F and p
% values for the regression.
%
% The X matrix should include a column of ones so that the model
% contains a constant term. The F and p values are computed under
% the assumption that the model contains a constant term, and they
% are not correct for models without a constant. The R-square
% value is the ratio of the regression sum of squares to the
% total sum of squares.
% References:
% [1] Samprit Chatterjee and Ali S. Hadi, "Influential Observations,
% High Leverage Points, and Outliers in Linear Regression",
% Statistical Science 1986 Vol. 1 No. 3 pp. 379-416.
% [2] N. Draper and H. Smith, "Applied Regression Analysis, Second
% Edition", Wiley, 1981.
% B.A. Jones 3-04-93
% Copyright 1993-2002 The MathWorks, Inc.
% $Revision: 2.13 $ $Date: 2002/01/17 21:31:53 $
if nargin < 2,
error('REGRESS requires at least two input arguments.');
end
if nargin == 2,
alpha = 0.05;
end
% Check that matrix (X) and left hand side (y) have compatible dimensions
[n,p] = size(X);
[n1,collhs] = size(y);
if n ~= n1,
error('The number of rows in Y must equal the number of rows in X.');
end
if collhs ~= 1,
error('Y must be a vector, not a matrix');
end
% Remove missing values, if any
wasnan = (isnan(y) | any(isnan(X),2));
if (any(wasnan))
y(wasnan) = [];
X(wasnan,:) = [];
n = length(y);
end
% Find the least squares solution.
[Q, R]=qr(X,0);
b = R\(Q'*y);
% Find a confidence interval for each component of x
% Draper and Smith, equation 2.6.15, page 94
if (size(R,1)>=size(R,2))
RI = R\eye(p);
xdiag=sqrt(sum((RI .* RI)',1))';
T = X*RI;
else
xdiag = NaN*ones(size(b));
T = NaN*ones(size(y));
end
nu = max(0,n-p); % Residual degrees of freedom
yhat = X*b; % Predicted responses at each data point.
r = y-yhat; % Residuals.
if nu ~= 0
rmse = norm(r)/sqrt(nu); % Root mean square error.
else
rmse = Inf;
end
s2 = rmse^2; % Estimator of error variance.
if nargout>=2
tval = tinv((1-alpha/2),nu);
bint = [b-tval*xdiag*rmse, b+tval*xdiag*rmse];
end
% Calculate R-squared.
if nargout==5,
RSS = norm(yhat-mean(y))^2; % Regression sum of squares.回归平方和
TSS = norm(y-mean(y))^2; % Total sum of squares.总离差平方和
r2 = RSS/TSS; % R-square statistic.
if (p>1)
F = (RSS/(p-1))/s2; % F statistic for regression回归的F统计量
else
F = NaN;
end
prob = 1 - fcdf(F,p-1,nu); % Significance probability for regression
stats = [r2 F prob];
% All that requires a constant. Do we have one?
if (~any(all(X==1)))
% Apparently not, but look for an implied constant.
b0 = R\(Q'*ones(n,1));
if (sum(abs(1-X*b0))>n*sqrt(eps))
warning(sprintf(['R-square is not well defined unless X has' ...
' a column of ones.\nType "help regress" for' ...
' more information.']));
end
end
end
% Find the standard errors of the residuals.
% Get the diagonal elements of the "Hat" matrix.
% Calculate the variance estimate obtained by removing each case (i.e. sigmai)
% see Chatterjee and Hadi p. 380 equation 14.
if nargout>=4
hatdiag=sum(T .* T,2);
ok = ((1-hatdiag) > sqrt(eps));
hatdiag(~ok) = 1;
if nu < 1,
ser=rmse*ones(length(y),1);
elseif nu > 1
denom = (nu-1) .* (1-hatdiag);
sigmai = zeros(length(denom),1);
sigmai(ok) = sqrt(max(0,(nu*s2/(nu-1)) - (r(ok) .^2 ./ denom(ok))));
ser = sqrt(1-hatdiag) .* sigmai;
ser(~ok) = Inf;
elseif nu == 1
ser = sqrt(1-hatdiag) .* rmse;
ser(~ok) = Inf;
end
% Create confidence intervals for residuals.
Z=[(r-tval*ser) (r+tval*ser)]';
rint=Z';
end
% Restore NaN so inputs and outputs conform
if (nargout>2 & any(wasnan))
tmp = ones(size(wasnan));
tmp(:) = NaN;
tmp(~wasnan) = r;
r = tmp;
end
if (nargout>3 & any(wasnan))
tmp = ones(length(wasnan),2);
tmp(:) = NaN;
tmp(~wasnan,:) = rint;
rint = tmp;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -