📄 mpc_law.m
字号:
%%%% Compute MPC control law given the prediction matrices
%%%% Assumes: (i) u constant after nu steps
%%%% (ii) predictions given as
%%%% y = H*Du(future) + P*Du(past) + Q*y(past)
%%%% (iii) weights on cost are Wy (outputs), Wu (inputs)
%%%% (iv) sizey is the number of outputs
%%%%
%%%% Performance index is given as
%%%% J = Du(future)' S Du(future) + Du(future)'*2X*[Du(past);y(past);r]
%%%%
%%%% Control law is given as
%%%% Du(future) = Pr*r - Dk*Du(past) - Nk*y(past)
%%%%
%%%% Pr is given as a simple gain (edit this code to reinstitute advance knowledge)
%%%%
%%%% [Nk,Dk,Pr,S,X] =mpc_law(H,P,Q,nu,Wu,Wy,sizey)
%%
%% Author: J.A. Rossiter (email: J.A.Rossiter@shef.ac.uk)
function [Nk,Dk,Pr,S,X] =mpc_law(H,P,Q,nu,Wu,Wy,sizey)
%%%% Control horizon
P1 = H(:,1:sizey*nu);
%% Set up weighting matrices
WY=Wy;
WU=Wu;
L = eye(sizey);
npred = size(P1,1)/sizey;
for i = 2:npred;
v=(i-1)*sizey+1:i*sizey;
WY(v,v) = Wy;
WU(v,v) = Wu;
L = [L;eye(sizey)];
end
WU = WU(1:nu*sizey,1:nu*sizey);
%%% Define performance index parameters
S = P1'*WY*P1 + WU;
X = [P1'*WY*P,P1'*WY*Q,-P1'*WY];
%%%% Define the control law parameters
M = inv(S);
Nk = M*P1'*WY*Q;
Dk = M*P1'*WY*P;
Pr = M*P1'*WY;
%%%%% Remove advance knowledge on the set point
Pr = Pr*L;
X = [P1'*WY*P,P1'*WY*Q,-P1'*WY*L];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -