📄 pca_kpm.m
字号:
function [pc_vec]=pca_kpm(features,N, method);
% PCA_KPM Compute top N principal components using eigs or svd.
% [pc_vec]=pca_kpm(features,N)
%
% features(:,i) is the i'th example - each COLUMN is an observation
% pc_vec(:,j) is the j'th basis function onto which you should project the data
% using pc_vec' * features
[d ncases] = size(features);
fm=features-repmat(mean(features,2), 1, ncases);
if method==1 % d*d < d*ncases
fprintf('pca_kpm eigs\n');
options.disp = 0;
C = cov(fm'); % d x d matrix
[pc_vec, evals] = eigs(C, N, 'LM', options);
else
% [U,D,V] = SVD(fm), U(:,i)=evec of fm fm', V(:,i) = evec of fm' fm
fprintf('pca_kpm svds\n');
[U,D,V] = svds(fm', N);
pc_vec = V;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -