📄 stiffnessmatrix3d.h
字号:
virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new UFC_StiffnessMatrix3DBilinearForm_dof_map_0(); }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class UFC_StiffnessMatrix3DBilinearForm_dof_map_1: public ufc::dof_map{private: unsigned int __global_dimension;public: /// Constructor UFC_StiffnessMatrix3DBilinearForm_dof_map_1() : ufc::dof_map() { __global_dimension = 0; } /// Destructor virtual ~UFC_StiffnessMatrix3DBilinearForm_dof_map_1() { // Do nothing } /// Return a string identifying the dof map virtual const char* signature() const { return "FFC dof map for Lagrange finite element of degree 1 on a tetrahedron"; } /// Return true iff mesh entities of topological dimension d are needed virtual bool needs_mesh_entities(unsigned int d) const { switch ( d ) { case 0: return true; break; case 1: return false; break; case 2: return false; break; case 3: return false; break; } return false; } /// Initialize dof map for mesh (return true iff init_cell() is needed) virtual bool init_mesh(const ufc::mesh& m) { __global_dimension = m.num_entities[0]; return false; } /// Initialize dof map for given cell virtual void init_cell(const ufc::mesh& m, const ufc::cell& c) { // Do nothing } /// Finish initialization of dof map for cells virtual void init_cell_finalize() { // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 4; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 3; } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = c.entity_indices[0][0]; dofs[1] = c.entity_indices[0][1]; dofs[2] = c.entity_indices[0][2]; dofs[3] = c.entity_indices[0][3]; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: dofs[0] = 1; dofs[1] = 2; dofs[2] = 3; break; case 1: dofs[0] = 0; dofs[1] = 2; dofs[2] = 3; break; case 2: dofs[0] = 0; dofs[1] = 1; dofs[2] = 3; break; case 3: dofs[0] = 0; dofs[1] = 1; dofs[2] = 2; break; } } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { const double * const * x = c.coordinates; coordinates[0][0] = x[0][0]; coordinates[0][1] = x[0][1]; coordinates[0][2] = x[0][2]; coordinates[1][0] = x[1][0]; coordinates[1][1] = x[1][1]; coordinates[1][2] = x[1][2]; coordinates[2][0] = x[2][0]; coordinates[2][1] = x[2][1]; coordinates[2][2] = x[2][2]; coordinates[3][0] = x[3][0]; coordinates[3][1] = x[3][1]; coordinates[3][2] = x[3][2]; } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 1; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new UFC_StiffnessMatrix3DBilinearForm_dof_map_1(); }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class UFC_StiffnessMatrix3DBilinearForm_dof_map_2: public ufc::dof_map{private: unsigned int __global_dimension;public: /// Constructor UFC_StiffnessMatrix3DBilinearForm_dof_map_2() : ufc::dof_map() { __global_dimension = 0; } /// Destructor virtual ~UFC_StiffnessMatrix3DBilinearForm_dof_map_2() { // Do nothing } /// Return a string identifying the dof map virtual const char* signature() const { return "FFC dof map for Discontinuous Lagrange finite element of degree 0 on a tetrahedron"; } /// Return true iff mesh entities of topological dimension d are needed virtual bool needs_mesh_entities(unsigned int d) const { switch ( d ) { case 0: return false; break; case 1: return false; break; case 2: return false; break; case 3: return true; break; } return false; } /// Initialize dof map for mesh (return true iff init_cell() is needed) virtual bool init_mesh(const ufc::mesh& m) { __global_dimension = m.num_entities[3]; return false; } /// Initialize dof map for given cell virtual void init_cell(const ufc::mesh& m, const ufc::cell& c) { // Do nothing } /// Finish initialization of dof map for cells virtual void init_cell_finalize() { // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 1; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 0; } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = c.entity_indices[3][0]; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: break; case 1: break; case 2: break; case 3: break; } } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { const double * const * x = c.coordinates; coordinates[0][0] = 0.25*x[0][0] + 0.25*x[1][0] + 0.25*x[2][0] + 0.25*x[3][0]; coordinates[0][1] = 0.25*x[0][1] + 0.25*x[1][1] + 0.25*x[2][1] + 0.25*x[3][1]; coordinates[0][2] = 0.25*x[0][2] + 0.25*x[1][2] + 0.25*x[2][2] + 0.25*x[3][2]; } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 1; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new UFC_StiffnessMatrix3DBilinearForm_dof_map_2(); }};/// This class defines the interface for the tabulation of the cell/// tensor corresponding to the local contribution to a form from/// the integral over a cell.class UFC_StiffnessMatrix3DBilinearForm_cell_integral_0: public ufc::cell_integral{public: /// Constructor UFC_StiffnessMatrix3DBilinearForm_cell_integral_0() : ufc::cell_integral() { // Do nothing } /// Destructor virtual ~UFC_StiffnessMatrix3DBilinearForm_cell_integral_0() { // Do nothing } /// Tabulate the tensor for the contribution from a local cell virtual void tabulate_tensor(double* A, const double * const * w, const ufc::cell& c) const { // Extract vertex coordinates const double * const * x = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = x[1][0] - x[0][0]; const double J_01 = x[2][0] - x[0][0]; const double J_02 = x[3][0] - x[0][0]; const double J_10 = x[1][1] - x[0][1]; const double J_11 = x[2][1] - x[0][1]; const double J_12 = x[3][1] - x[0][1]; const double J_20 = x[1][2] - x[0][2]; const double J_21 = x[2][2] - x[0][2]; const double J_22 = x[3][2] - x[0][2]; // Compute sub determinants const double d_00 = J_11*J_22 - J_12*J_21; const double d_01 = J_12*J_20 - J_10*J_22; const double d_02 = J_10*J_21 - J_11*J_20; const double d_10 = J_02*J_21 - J_01*J_22; const double d_11 = J_00*J_22 - J_02*J_20; const double d_12 = J_01*J_20 - J_00*J_21; const double d_20 = J_01*J_12 - J_02*J_11; const double d_21 = J_02*J_10 - J_00*J_12; const double d_22 = J_00*J_11 - J_01*J_10; // Compute determinant of Jacobian double detJ = J_00*d_00 + J_10*d_10 + J_20*d_20; // Compute inverse of Jacobian const double Jinv_00 = d_00 / detJ; const double Jinv_01 = d_10 / detJ; const double Jinv_02 = d_20 / detJ; const double Jinv_10 = d_01 / detJ; const double Jinv_11 = d_11 / detJ; const double Jinv_12 = d_21 / detJ; const double Jinv_20 = d_02 / detJ; const double Jinv_21 = d_12 / detJ; const double Jinv_22 = d_22 / detJ; // Take absolute value of determinant detJ = std::abs(detJ); // Set scale factor const double det = detJ; // Compute coefficients const double c0_0_0_0 = w[0][0]; // Compute geometry tensors const double G0_0_0_0 = det*c0_0_0_0*(Jinv_00*Jinv_00 + Jinv_01*Jinv_01 + Jinv_02*Jinv_02); const double G0_0_0_1 = det*c0_0_0_0*(Jinv_00*Jinv_10 + Jinv_01*Jinv_11 + Jinv_02*Jinv_12); const do
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -