⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 triangle.cpp

📁 Dolfin provide a high-performance linear algebra library
💻 CPP
字号:
// Copyright (C) 2006-2007 Anders Logg.// Licensed under the GNU LGPL Version 2.1.//// Modified by Garth N. Wells, 2006.// Modified by Kristian Oelgaard, 2006-2007.// // First added:  2006-06-05// Last changed: 2007-07-20#include <dolfin/dolfin_log.h>#include <dolfin/Cell.h>#include <dolfin/MeshEditor.h>#include <dolfin/Facet.h>#include <dolfin/Triangle.h>#include <dolfin/Vertex.h>#include <dolfin/GeometricPredicates.h>using namespace dolfin;//-----------------------------------------------------------------------------dolfin::uint Triangle::dim() const{  return 2;}//-----------------------------------------------------------------------------dolfin::uint Triangle::numEntities(uint dim) const{  switch ( dim )  {  case 0:    return 3; // vertices  case 1:    return 3; // edges  case 2:    return 1; // cells  default:    error("Illegal topological dimension %d for tetrahedron.", dim);  }  return 0;}//-----------------------------------------------------------------------------dolfin::uint Triangle::numVertices(uint dim) const{  switch ( dim )  {  case 0:    return 1; // vertices  case 1:    return 2; // edges  case 2:    return 3; // cells  default:    error("Illegal topological dimension %d for tetrahedron.", dim);  }  return 0;}//-----------------------------------------------------------------------------dolfin::uint Triangle::orientation(const Cell& cell) const{  // This is a trick to be allowed to initialize mesh entities from cell  Cell& c = const_cast<Cell&>(cell);  Vertex v0(c.mesh(), c.entities(0)[0]);  Vertex v1(c.mesh(), c.entities(0)[1]);  Vertex v2(c.mesh(), c.entities(0)[2]);  Point p01 = v1.point() - v0.point();  Point p02 = v2.point() - v0.point();  Point n(-p01.y(), p01.x());  return ( n.dot(p02) < 0.0 ? 1 : 0 );}//-----------------------------------------------------------------------------void Triangle::createEntities(uint** e, uint dim, const uint* v) const{  // We only need to know how to create edges  if ( dim != 1 )    error("Don't know how to create entities of topological dimension %d.", dim);  // Create the three edges  e[0][0] = v[1]; e[0][1] = v[2];  e[1][0] = v[0]; e[1][1] = v[2];  e[2][0] = v[0]; e[2][1] = v[1];}//-----------------------------------------------------------------------------void Triangle::orderEntities(Cell& cell) const{  // Sort i - j for i > j: 1 - 0, 2 - 0, 2 - 1  // Get mesh topology  MeshTopology& topology = cell.mesh().topology();  // Sort local vertices on edges in ascending order, connectivity 1 - 0  if ( topology(1, 0).size() > 0 )  {    dolfin_assert(topology(2, 1).size() > 0);    // Get edges    uint* cell_edges = cell.entities(1);    // Sort vertices on each edge    for (uint i = 0; i < 3; i++)    {      uint* edge_vertices = topology(1, 0)(cell_edges[i]);      std::sort(edge_vertices, edge_vertices + 2);    }  }  // Sort local vertices on cell in ascending order, connectivity 2 - 0  if ( topology(2, 0).size() > 0 )  {    uint* cell_vertices = cell.entities(0);    std::sort(cell_vertices, cell_vertices + 3);  }  // Sort local edges on cell after non-incident vertex, connectivity 2 - 1  if ( topology(2, 1).size() > 0 )  {    dolfin_assert(topology(2, 1).size() > 0);    // Get cell vertices and edges    uint* cell_vertices = cell.entities(0);    uint* cell_edges = cell.entities(1);    // Loop over vertices on cell    for (uint i = 0; i < 3; i++)    {      // Loop over edges on cell      for (uint j = i; j < 3; j++)      {        uint* edge_vertices = topology(1, 0)(cell_edges[j]);        // Check if the ith vertex of the cell is non-incident with edge j        if ( std::count(edge_vertices, edge_vertices + 2, cell_vertices[i]) == 0 )        {          // Swap edge numbers          uint tmp = cell_edges[i];          cell_edges[i] = cell_edges[j];          cell_edges[j] = tmp;          break;        }      }    }  }}//-----------------------------------------------------------------------------void Triangle::refineCell(Cell& cell, MeshEditor& editor,                          uint& current_cell) const{  // Get vertices and edges  const uint* v = cell.entities(0);  const uint* e = cell.entities(1);  dolfin_assert(v);  dolfin_assert(e);  // Get offset for new vertex indices  const uint offset = cell.mesh().numVertices();  // Compute indices for the six new vertices  const uint v0 = v[0];  const uint v1 = v[1];  const uint v2 = v[2];  const uint e0 = offset + e[findEdge(0, cell)];  const uint e1 = offset + e[findEdge(1, cell)];  const uint e2 = offset + e[findEdge(2, cell)];    // Add the four new cells  editor.addCell(current_cell++, v0, e2, e1);  editor.addCell(current_cell++, v1, e0, e2);  editor.addCell(current_cell++, v2, e1, e0);  editor.addCell(current_cell++, e0, e1, e2);}//-----------------------------------------------------------------------------real Triangle::volume(const MeshEntity& triangle) const{  // Check that we get a triangle  if ( triangle.dim() != 2 )    error("Illegal mesh entity for computation of triangle volume (area). Not a triangle.");  // Get mesh geometry  const MeshGeometry& geometry = triangle.mesh().geometry();  // Get the coordinates of the three vertices  const uint* vertices = triangle.entities(0);  const real* x0 = geometry.x(vertices[0]);  const real* x1 = geometry.x(vertices[1]);  const real* x2 = geometry.x(vertices[2]);    if ( geometry.dim() == 2 )  {    // Compute area of triangle embedded in R^2    real v2 = (x0[0]*x1[1] + x0[1]*x2[0] + x1[0]*x2[1]) - (x2[0]*x1[1] + x2[1]*x0[0] + x1[0]*x0[1]);        // Formula for volume from http://mathworld.wolfram.com     return v2 = 0.5 * std::abs(v2);  }  else if ( geometry.dim() == 3 )  {    // Compute area of triangle embedded in R^3    real v0 = (x0[1]*x1[2] + x0[2]*x2[1] + x1[1]*x2[2]) - (x2[1]*x1[2] + x2[2]*x0[1] + x1[1]*x0[2]);    real v1 = (x0[2]*x1[0] + x0[0]*x2[2] + x1[2]*x2[0]) - (x2[2]*x1[0] + x2[0]*x0[2] + x1[2]*x0[0]);    real v2 = (x0[0]*x1[1] + x0[1]*x2[0] + x1[0]*x2[1]) - (x2[0]*x1[1] + x2[1]*x0[0] + x1[0]*x0[1]);      // Formula for volume from http://mathworld.wolfram.com     return  0.5 * sqrt(v0*v0 + v1*v1 + v2*v2);  }  else    error("Only know how to volume (area) of a triangle when embedded in R^2 or R^3.");  return 0.0;}//-----------------------------------------------------------------------------real Triangle::diameter(const MeshEntity& triangle) const{  // Check that we get a triangle  if ( triangle.dim() != 2 )    error("Illegal mesh entity for computation of triangle diameter. Not a triangle.");  // Get mesh geometry  const MeshGeometry& geometry = triangle.mesh().geometry();  // Only know how to compute the diameter when embedded in R^2 or R^3  if ( geometry.dim() != 2 && geometry.dim() != 3 )    error("Only know how to volume (area) of a triangle when embedded in R^2 or R^3.");  // Get the coordinates of the three vertices  const uint* vertices = triangle.entities(0);  Point p0 = geometry.point(vertices[0]);  Point p1 = geometry.point(vertices[1]);  Point p2 = geometry.point(vertices[2]);  // FIXME: Assuming 3D coordinates, could be more efficient if  // FIXME: if we assumed 2D coordinates in 2D  // Compute side lengths  real a  = p1.distance(p2);  real b  = p0.distance(p2);  real c  = p0.distance(p1);  // Formula for diameter (2*circumradius) from http://mathworld.wolfram.com  return 0.5 * a*b*c / volume(triangle);}//-----------------------------------------------------------------------------real Triangle::normal(const Cell& cell, uint facet, uint i) const{  // This is a trick to be allowed to initialize a facet from the cell  Cell& c = const_cast<Cell&>(cell);  // Create facet from the mesh and local facet number  Facet f(c.mesh(), c.entities(1)[facet]);  // The normal vector is currently only defined for a triangle in R^2  if ( c.mesh().geometry().dim() != 2 )    error("The normal vector is only defined when the triangle is in R^2");      // Get global index of opposite vertex  const uint v0 = cell.entities(0)[facet];    // Get global index of vertices on the facet  uint v1 = f.entities(0)[0];  uint v2 = f.entities(0)[1];    // Get mesh geometry  const MeshGeometry& geometry = cell.mesh().geometry();    // Get the coordinates of the three vertices  const real* p0 = geometry.x(v0);  const real* p1 = geometry.x(v1);  const real* p2 = geometry.x(v2);  // Vector normal to facet  real n[2];  n[0] = (p2[1] - p1[1]);  n[1] = -(p2[0] - p1[0]);  // Compute length of normal  const real l = std::sqrt(n[0]*n[0] + n[1]*n[1]);  // Flip direction of normal so it points outward  if ( (n[0]*(p0[0] - p1[0]) + n[1]*(p0[1] - p1[1])) < 0 )    return n[i] / l;  else    return -n[i] / l;  return 0.0;}//-----------------------------------------------------------------------------bool Triangle::intersects(const MeshEntity& triangle, const Point& p) const{  // Get mesh geometry  const MeshGeometry& geometry = triangle.mesh().geometry();  // Get global index of vertices of the triangle  uint v0 = triangle.entities(0)[0];  uint v1 = triangle.entities(0)[1];  uint v2 = triangle.entities(0)[2];  // Check orientation  dolfin::uint vtmp;  if(orientation((Cell&)triangle) == 1)  {    vtmp = v2;    v2 = v1;    v1 = vtmp;  }  // Get the coordinates of the three vertices  const real* x0 = geometry.x(v0);  const real* x1 = geometry.x(v1);  const real* x2 = geometry.x(v2);  real xcoordinates[3];  real* x = xcoordinates;  x[0] = p[0];  x[1] = p[1];  x[2] = p[2];//   cout << "p0: " << vx0.point() << endl;//   cout << "p1: " << vx1.point() << endl;//   cout << "p2: " << vx2.point() << endl;//   cout << "p: " << p << endl;  real d1, d2, d3;//   // Test orientation of p w.r.t. each edge//   d1 = orient2d((double *)x0, (double *)x1, x);//   if(d1 < 0.0)//     return false;//   d2 = orient2d((double *)x1, (double *)x2, x);//   if(d2 < 0.0)//     return false;//   d3 = orient2d((double *)x2, (double *)x0, x);//   if(d3 < 0.0)//     return false;//   if(d1 == 0.0 || d2 == 0.0 || d3 == 0.0)//     return true;  // Test orientation of p w.r.t. each edge  d1 = orient2d((double *)x0, (double *)x1, x);  //cout << "d1: " << d1 << endl;  d2 = orient2d((double *)x1, (double *)x2, x);  //cout << "d2: " << d2 << endl;  d3 = orient2d((double *)x2, (double *)x0, x);  //cout << "d3: " << d3 << endl;  // FIXME: Need to check the predicates for correctness  // Temporary fix: introduce threshold  //   if(d1 == 0.0 || d2 == 0.0 || d3 == 0.0)  //     return true;  if(fabs(d1) <= DOLFIN_EPS ||     fabs(d2) <= DOLFIN_EPS ||     fabs(d3) <= DOLFIN_EPS)  {    return true;  }    if(d1 < 0.0)    return false;  if(d2 < 0.0)    return false;  if(d3 < 0.0)    return false;  return true;}//-----------------------------------------------------------------------------std::string Triangle::description() const{  std::string s = "triangle (simplex of topological dimension 2)";  return s;}//-----------------------------------------------------------------------------dolfin::uint Triangle::findEdge(uint i, const Cell& cell) const{  // Get vertices and edges  const uint* v = cell.entities(0);  const uint* e = cell.entities(1);  dolfin_assert(v);  dolfin_assert(e);    // Look for edge satisfying ordering convention  for (uint j = 0; j < 3; j++)  {    const uint* ev = cell.mesh().topology()(1, 0)(e[j]);    dolfin_assert(ev);    if (ev[0] != v[i] && ev[1] != v[i])      return j;  }  // We should not reach this  error("Unable to find edge.");  return 0;}//-----------------------------------------------------------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -