⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ffc_15.h

📁 Dolfin provide a high-performance linear algebra library
💻 H
📖 第 1 页 / 共 5 页
字号:
    // Construct transformation matrix    for (unsigned int row = 0; row < num_derivatives; row++)    {      for (unsigned int col = 0; col < num_derivatives; col++)      {        for (unsigned int k = 0; k < n; k++)          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];      }    }        // Reset values    for (unsigned int j = 0; j < 1*num_derivatives; j++)      values[j] = 0;        // Map degree of freedom to element degree of freedom    const unsigned int dof = i;        // Generate scalings    const double scalings_y_0 = 1;    const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);    const double scalings_y_2 = scalings_y_1*(0.5 - 0.5*y);    const double scalings_y_3 = scalings_y_2*(0.5 - 0.5*y);        // Compute psitilde_a    const double psitilde_a_0 = 1;    const double psitilde_a_1 = x;    const double psitilde_a_2 = 1.5*x*psitilde_a_1 - 0.5*psitilde_a_0;    const double psitilde_a_3 = 1.66666666666667*x*psitilde_a_2 - 0.666666666666667*psitilde_a_1;        // Compute psitilde_bs    const double psitilde_bs_0_0 = 1;    const double psitilde_bs_0_1 = 1.5*y + 0.5;    const double psitilde_bs_0_2 = 0.111111111111111*psitilde_bs_0_1 + 1.66666666666667*y*psitilde_bs_0_1 - 0.555555555555556*psitilde_bs_0_0;    const double psitilde_bs_0_3 = 0.05*psitilde_bs_0_2 + 1.75*y*psitilde_bs_0_2 - 0.7*psitilde_bs_0_1;    const double psitilde_bs_1_0 = 1;    const double psitilde_bs_1_1 = 2.5*y + 1.5;    const double psitilde_bs_1_2 = 0.54*psitilde_bs_1_1 + 2.1*y*psitilde_bs_1_1 - 0.56*psitilde_bs_1_0;    const double psitilde_bs_2_0 = 1;    const double psitilde_bs_2_1 = 3.5*y + 2.5;    const double psitilde_bs_3_0 = 1;        // Compute basisvalues    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;    const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;    const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;    const double basisvalue3 = 2.73861278752583*psitilde_a_2*scalings_y_2*psitilde_bs_2_0;    const double basisvalue4 = 2.12132034355964*psitilde_a_1*scalings_y_1*psitilde_bs_1_1;    const double basisvalue5 = 1.22474487139159*psitilde_a_0*scalings_y_0*psitilde_bs_0_2;    const double basisvalue6 = 3.74165738677394*psitilde_a_3*scalings_y_3*psitilde_bs_3_0;    const double basisvalue7 = 3.16227766016838*psitilde_a_2*scalings_y_2*psitilde_bs_2_1;    const double basisvalue8 = 2.44948974278318*psitilde_a_1*scalings_y_1*psitilde_bs_1_2;    const double basisvalue9 = 1.4142135623731*psitilde_a_0*scalings_y_0*psitilde_bs_0_3;        // Table(s) of coefficients    const static double coefficients0[10][10] = \    {{0.0471404520791032, -0.0288675134594813, -0.0166666666666666, 0.0782460796435951, 0.0606091526731326, 0.0349927106111883, -0.0601337794302955, -0.0508223195384204, -0.0393667994375868, -0.0227284322524248},    {0.0471404520791031, 0.0288675134594813, -0.0166666666666667, 0.0782460796435952, -0.0606091526731326, 0.0349927106111883, 0.0601337794302955, -0.0508223195384204, 0.0393667994375868, -0.0227284322524247},    {0.0471404520791032, 0, 0.0333333333333334, 0, 0, 0.104978131833565, 0, 0, 0, 0.0909137290096989},    {0.106066017177982, 0.259807621135332, -0.15, 0.117369119465393, 0.0606091526731326, -0.0787335988751736, 0, 0.101644639076841, -0.131222664791956, 0.090913729009699},    {0.106066017177982, 0, 0.3, 0, 0.151522881682832, 0.0262445329583912, 0, 0, 0.131222664791956, -0.136370593514548},    {0.106066017177982, -0.259807621135332, -0.15, 0.117369119465393, -0.0606091526731326, -0.0787335988751736, 0, 0.101644639076841, 0.131222664791956, 0.090913729009699},    {0.106066017177982, 0, 0.3, 0, -0.151522881682832, 0.0262445329583912, 0, 0, -0.131222664791956, -0.136370593514548},    {0.106066017177982, -0.259807621135332, -0.15, -0.0782460796435952, 0.090913729009699, 0.0962299541807677, 0.180401338290886, 0.0508223195384204, -0.0131222664791956, -0.0227284322524247},    {0.106066017177982, 0.259807621135332, -0.15, -0.0782460796435952, -0.090913729009699, 0.0962299541807677, -0.180401338290886, 0.0508223195384204, 0.0131222664791956, -0.0227284322524247},    {0.636396103067893, 0, 0, -0.234738238930785, 0, -0.262445329583912, 0, -0.203289278153682, 0, 0.090913729009699}};        // Interesting (new) part    // Tables of derivatives of the polynomial base (transpose)    const static double dmats0[10][10] = \    {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {2.44948974278318, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {0, 4.74341649025257, 0, 0, 0, 0, 0, 0, 0, 0},    {2, 0, 3.53553390593274, 0, 0, 0, 0, 0, 0, 0},    {0, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {2.64575131106459, 0, -1.49666295470958, 6.83130051063973, 0, 0.30550504633039, 0, 0, 0, 0},    {0, 2.19089023002067, 0, 0, 6.26099033699941, 0, 0, 0, 0, 0},    {1.73205080756888, 0, 3.91918358845308, 0, 0, 4.2, 0, 0, 0, 0},    {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};        const static double dmats1[10][10] = \    {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {1.22474487139159, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {2.12132034355964, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {1.29099444873581, 2.37170824512628, -0.456435464587638, 0, 0, 0, 0, 0, 0, 0},    {1, 3.06186217847897, 1.76776695296637, 0, 0, 0, 0, 0, 0, 0},    {-1.15470053837925, 0, 4.08248290463863, 0, 0, 0, 0, 0, 0, 0},    {1.3228756555323, 2.59229627936314, -0.748331477354788, 3.41565025531987, -0.529150262212918, 0.152752523165196, 0, 0, 0, 0},    {1.11803398874989, 1.09544511501033, 1.26491106406735, 4.04145188432738, 3.13049516849971, -0.903696114115064, 0, 0, 0, 0},    {0.866025403784438, -2.54558441227157, 1.95959179422654, 0, 4.84974226119286, 2.1, 0, 0, 0, 0},    {2.5, 0, -1.4142135623731, 0, 0, 6.06217782649107, 0, 0, 0, 0}};        // Compute reference derivatives    // Declare pointer to array of derivatives on FIAT element    double *derivatives = new double [num_derivatives];        // Declare coefficients    double coeff0_0 = 0;    double coeff0_1 = 0;    double coeff0_2 = 0;    double coeff0_3 = 0;    double coeff0_4 = 0;    double coeff0_5 = 0;    double coeff0_6 = 0;    double coeff0_7 = 0;    double coeff0_8 = 0;    double coeff0_9 = 0;        // Declare new coefficients    double new_coeff0_0 = 0;    double new_coeff0_1 = 0;    double new_coeff0_2 = 0;    double new_coeff0_3 = 0;    double new_coeff0_4 = 0;    double new_coeff0_5 = 0;    double new_coeff0_6 = 0;    double new_coeff0_7 = 0;    double new_coeff0_8 = 0;    double new_coeff0_9 = 0;        // Loop possible derivatives    for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)    {      // Get values from coefficients array      new_coeff0_0 = coefficients0[dof][0];      new_coeff0_1 = coefficients0[dof][1];      new_coeff0_2 = coefficients0[dof][2];      new_coeff0_3 = coefficients0[dof][3];      new_coeff0_4 = coefficients0[dof][4];      new_coeff0_5 = coefficients0[dof][5];      new_coeff0_6 = coefficients0[dof][6];      new_coeff0_7 = coefficients0[dof][7];      new_coeff0_8 = coefficients0[dof][8];      new_coeff0_9 = coefficients0[dof][9];          // Loop derivative order      for (unsigned int j = 0; j < n; j++)      {        // Update old coefficients        coeff0_0 = new_coeff0_0;        coeff0_1 = new_coeff0_1;        coeff0_2 = new_coeff0_2;        coeff0_3 = new_coeff0_3;        coeff0_4 = new_coeff0_4;        coeff0_5 = new_coeff0_5;        coeff0_6 = new_coeff0_6;        coeff0_7 = new_coeff0_7;        coeff0_8 = new_coeff0_8;        coeff0_9 = new_coeff0_9;            if(combinations[deriv_num][j] == 0)        {          new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0] + coeff0_3*dmats0[3][0] + coeff0_4*dmats0[4][0] + coeff0_5*dmats0[5][0] + coeff0_6*dmats0[6][0] + coeff0_7*dmats0[7][0] + coeff0_8*dmats0[8][0] + coeff0_9*dmats0[9][0];          new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1] + coeff0_3*dmats0[3][1] + coeff0_4*dmats0[4][1] + coeff0_5*dmats0[5][1] + coeff0_6*dmats0[6][1] + coeff0_7*dmats0[7][1] + coeff0_8*dmats0[8][1] + coeff0_9*dmats0[9][1];          new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2] + coeff0_3*dmats0[3][2] + coeff0_4*dmats0[4][2] + coeff0_5*dmats0[5][2] + coeff0_6*dmats0[6][2] + coeff0_7*dmats0[7][2] + coeff0_8*dmats0[8][2] + coeff0_9*dmats0[9][2];          new_coeff0_3 = coeff0_0*dmats0[0][3] + coeff0_1*dmats0[1][3] + coeff0_2*dmats0[2][3] + coeff0_3*dmats0[3][3] + coeff0_4*dmats0[4][3] + coeff0_5*dmats0[5][3] + coeff0_6*dmats0[6][3] + coeff0_7*dmats0[7][3] + coeff0_8*dmats0[8][3] + coeff0_9*dmats0[9][3];          new_coeff0_4 = coeff0_0*dmats0[0][4] + coeff0_1*dmats0[1][4] + coeff0_2*dmats0[2][4] + coeff0_3*dmats0[3][4] + coeff0_4*dmats0[4][4] + coeff0_5*dmats0[5][4] + coeff0_6*dmats0[6][4] + coeff0_7*dmats0[7][4] + coeff0_8*dmats0[8][4] + coeff0_9*dmats0[9][4];          new_coeff0_5 = coeff0_0*dmats0[0][5] + coeff0_1*dmats0[1][5] + coeff0_2*dmats0[2][5] + coeff0_3*dmats0[3][5] + coeff0_4*dmats0[4][5] + coeff0_5*dmats0[5][5] + coeff0_6*dmats0[6][5] + coeff0_7*dmats0[7][5] + coeff0_8*dmats0[8][5] + coeff0_9*dmats0[9][5];          new_coeff0_6 = coeff0_0*dmats0[0][6] + coeff0_1*dmats0[1][6] + coeff0_2*dmats0[2][6] + coeff0_3*dmats0[3][6] + coeff0_4*dmats0[4][6] + coeff0_5*dmats0[5][6] + coeff0_6*dmats0[6][6] + coeff0_7*dmats0[7][6] + coeff0_8*dmats0[8][6] + coeff0_9*dmats0[9][6];          new_coeff0_7 = coeff0_0*dmats0[0][7] + coeff0_1*dmats0[1][7] + coeff0_2*dmats0[2][7] + coeff0_3*dmats0[3][7] + coeff0_4*dmats0[4][7] + coeff0_5*dmats0[5][7] + coeff0_6*dmats0[6][7] + coeff0_7*dmats0[7][7] + coeff0_8*dmats0[8][7] + coeff0_9*dmats0[9][7];          new_coeff0_8 = coeff0_0*dmats0[0][8] + coeff0_1*dmats0[1][8] + coeff0_2*dmats0[2][8] + coeff0_3*dmats0[3][8] + coeff0_4*dmats0[4][8] + coeff0_5*dmats0[5][8] + coeff0_6*dmats0[6][8] + coeff0_7*dmats0[7][8] + coeff0_8*dmats0[8][8] + coeff0_9*dmats0[9][8];          new_coeff0_9 = coeff0_0*dmats0[0][9] + coeff0_1*dmats0[1][9] + coeff0_2*dmats0[2][9] + coeff0_3*dmats0[3][9] + coeff0_4*dmats0[4][9] + coeff0_5*dmats0[5][9] + coeff0_6*dmats0[6][9] + coeff0_7*dmats0[7][9] + coeff0_8*dmats0[8][9] + coeff0_9*dmats0[9][9];        }        if(combinations[deriv_num][j] == 1)        {          new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0] + coeff0_3*dmats1[3][0] + coeff0_4*dmats1[4][0] + coeff0_5*dmats1[5][0] + coeff0_6*dmats1[6][0] + coeff0_7*dmats1[7][0] + coeff0_8*dmats1[8][0] + coeff0_9*dmats1[9][0];          new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1] + coeff0_3*dmats1[3][1] + coeff0_4*dmats1[4][1] + coeff0_5*dmats1[5][1] + coeff0_6*dmats1[6][1] + coeff0_7*dmats1[7][1] + coeff0_8*dmats1[8][1] + coeff0_9*dmats1[9][1];          new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2] + coeff0_3*dmats1[3][2] + coeff0_4*dmats1[4][2] + coeff0_5*dmats1[5][2] + coeff0_6*dmats1[6][2] + coeff0_7*dmats1[7][2] + coeff0_8*dmats1[8][2] + coeff0_9*dmats1[9][2];          new_coeff0_3 = coeff0_0*dmats1[0][3] + coeff0_1*dmats1[1][3] + coeff0_2*dmats1[2][3] + coeff0_3*dmats1[3][3] + coeff0_4*dmats1[4][3] + coeff0_5*dmats1[5][3] + coeff0_6*dmats1[6][3] + coeff0_7*dmats1[7][3] + coeff0_8*dmats1[8][3] + coeff0_9*dmats1[9][3];          new_coeff0_4 = coeff0_0*dmats1[0][4] + coeff0_1*dmats1[1][4] + coeff0_2*dmats1[2][4] + coeff0_3*dmats1[3][4] + coeff0_4*dmats1[4][4] + coeff0_5*dmats1[5][4] + coeff0_6*dmats1[6][4] + coeff0_7*dmats1[7][4] + coeff0_8*dmats1[8][4] + coeff0_9*dmats1[9][4];          new_coeff0_5 = coeff0_0*dmats1[0][5] + coeff0_1*dmats1[1][5] + coeff0_2*dmats1[2][5] + coeff0_3*dmats1[3][5] + coeff0_4*dmats1[4][5] + coeff0_5*dmats1[5][5] + coeff0_6*dmats1[6][5] + coeff0_7*dmats1[7][5] + coeff0_8*dmats1[8][5] + coeff0_9*dmats1[9][5];          new_coeff0_6 = coeff0_0*dmats1[0][6] + coeff0_1*dmats1[1][6] + coeff0_2*dmats1[2][6] + coeff0_3*dmats1[3][6] + coeff0_4*dmats1[4][6] + coeff0_5*dmats1[5][6] + coeff0_6*dmats1[6][6] + coeff0_7*dmats1[7][6] + coeff0_8*dmats1[8][6] + coeff0_9*dmats1[9][6];          new_coeff0_7 = coeff0_0*dmats1[0][7] + coeff0_1*dmats1[1][7] + coeff0_2*dmats1[2][7] + coeff0_3*dmats1[3][7] + coeff0_4*dmats1[4][7] + coeff0_5*dmats1[5][7] + coeff0_6*dmats1[6][7] + coeff0_7*dmats1[7][7] + coeff0_8*dmats1[8][7] + coeff0_9*dmats1[9][7];          new_coeff0_8 = coeff0_0*dmats1[0][8] + coeff0_1*dmats1[1][8] + coeff0_2*dmats1[2][8] + coeff0_3*dmats1[3][8] + coeff0_4*dmats1[4][8] + coeff0_5*dmats1[5][8] + coeff0_6*dmats1[6][8] + coeff0_7*dmats1[7][8] + coeff0_8*dmats1[8][8] + coeff0_9*dmats1[9][8];          new_coeff0_9 = coeff0_0*dmats1[0][9] + coeff0_1*dmats1[1][9] + coeff0_2*dmats1[2][9] + coeff0_3*dmats1[3][9] + coeff0_4*dmats1[4][9] + coeff0_5*dmats1[5][9] + coeff0_6*dmats1[6][9] + coeff0_7*dmats1[7][9] + coeff0_8*dmats1[8][9] + coeff0_9*dmats1[9][9];        }          }      // Compute derivatives on reference element as dot product of coefficients and basisvalues      derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2 + new_coeff0_3*basisvalue3 + new_coeff0_4*basisvalue4 + new_coeff0_5*basisvalue5 + new_coeff0_6*basisvalue6 + new_coeff0_7*basisvalue7 + new_coeff0_8*basisvalue8 + new_coeff0_9*basisvalue9;    }        // Transform derivatives back to physical element    for (unsigned int row = 0; row < num_derivatives; row++)    {      for (unsigned int col = 0; col < num_derivatives; col++)      {        values[row] += transform[row][col]*derivatives[col];      }    }    // Delete pointer to array of derivatives on FIAT element    delete [] derivatives;        // Delete pointer to array of combinations of derivatives    delete [] combinations;      }  /// Evaluate linear functional for dof i on the function f  virtual double evaluate_dof(unsigned int i,                              const ufc::function& f,                              const ufc::cell& c) const  {    double values[1];    double coordinates[2];        // Nodal coordinates on reference cell    static double X[10][2] = {{0, 0}, {1, 0}, {0, 1}, {0.666666666666667, 0.333333333333333}, {0.333333333333333, 0.666666666666667}, {0, 0.333333333333333}, {0, 0.666666666666667}, {0.333333333333333, 0}, {0.666666666666667, 0}, {0.333333333333333, 0.333333333333333}};        // Components for each dof    static unsigned int components[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};        // Extract vertex coordinates    const double * const * x = c.coordinates;        // Evaluate basis functions for affine mapping    const double w0 = 1.0 - X[i][0] - X[i][1];    const double w1 = X[i][0];    const double w2 = X[i][1];        // Compute affine mapping x = F(X)    coordinates[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];    coordinates[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];        // Evaluate function at coordinates    f.evaluate(values, coordinates, c);        // Pick component for evaluation    return values[components[i]];  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Evaluate at vertices and use affine mapping    vertex_values[0] = dof_values[0];    vertex_values[1] = dof_values[1];    vertex_values[2] = dof_values[2];  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -