📄 ffc_22.h
字号:
for (unsigned int row = 1; row < num_derivatives; row++) { for (unsigned int num = 0; num < row; num++) { for (unsigned int col = n-1; col+1 > 0; col--) { if (combinations[row][col] + 1 > 2) combinations[row][col] = 0; else { combinations[row][col] += 1; break; } } } } // Compute inverse of Jacobian, components are scaled because of difference in FFC/FIAT reference elements const double Jinv[3][3] ={{2*d00 / detJ, 2*d10 / detJ, 2*d20 / detJ}, {2*d01 / detJ, 2*d11 / detJ, 2*d21 / detJ}, {2*d02 / detJ, 2*d12 / detJ, 2*d22 / detJ}}; // Declare transformation matrix // Declare pointer to two dimensional array and initialise double **transform = new double *[num_derivatives]; for (unsigned int j = 0; j < num_derivatives; j++) { transform[j] = new double [num_derivatives]; for (unsigned int k = 0; k < num_derivatives; k++) transform[j][k] = 1; } // Construct transformation matrix for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { for (unsigned int k = 0; k < n; k++) transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]]; } } // Reset values for (unsigned int j = 0; j < 3*num_derivatives; j++) values[j] = 0; if (0 <= i and i <= 0) { // Map degree of freedom to element degree of freedom const unsigned int dof = i; // Generate scalings const double scalings_y_0 = 1; const double scalings_z_0 = 1; // Compute psitilde_a const double psitilde_a_0 = 1; // Compute psitilde_bs const double psitilde_bs_0_0 = 1; // Compute psitilde_cs const double psitilde_cs_00_0 = 1; // Compute basisvalues const double basisvalue0 = 0.866025403784439*psitilde_a_0*scalings_y_0*psitilde_bs_0_0*scalings_z_0*psitilde_cs_00_0; // Table(s) of coefficients const static double coefficients0[1][1] = \ {{1.15470053837925}}; // Interesting (new) part // Tables of derivatives of the polynomial base (transpose) const static double dmats0[1][1] = \ {{0}}; const static double dmats1[1][1] = \ {{0}}; const static double dmats2[1][1] = \ {{0}}; // Compute reference derivatives // Declare pointer to array of derivatives on FIAT element double *derivatives = new double [num_derivatives]; // Declare coefficients double coeff0_0 = 0; // Declare new coefficients double new_coeff0_0 = 0; // Loop possible derivatives for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++) { // Get values from coefficients array new_coeff0_0 = coefficients0[dof][0]; // Loop derivative order for (unsigned int j = 0; j < n; j++) { // Update old coefficients coeff0_0 = new_coeff0_0; if(combinations[deriv_num][j] == 0) { new_coeff0_0 = coeff0_0*dmats0[0][0]; } if(combinations[deriv_num][j] == 1) { new_coeff0_0 = coeff0_0*dmats1[0][0]; } if(combinations[deriv_num][j] == 2) { new_coeff0_0 = coeff0_0*dmats2[0][0]; } } // Compute derivatives on reference element as dot product of coefficients and basisvalues derivatives[deriv_num] = new_coeff0_0*basisvalue0; } // Transform derivatives back to physical element for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { values[row] += transform[row][col]*derivatives[col]; } } // Delete pointer to array of derivatives on FIAT element delete [] derivatives; // Delete pointer to array of combinations of derivatives delete [] combinations; } if (1 <= i and i <= 1) { // Map degree of freedom to element degree of freedom const unsigned int dof = i - 1; // Generate scalings const double scalings_y_0 = 1; const double scalings_z_0 = 1; // Compute psitilde_a const double psitilde_a_0 = 1; // Compute psitilde_bs const double psitilde_bs_0_0 = 1; // Compute psitilde_cs const double psitilde_cs_00_0 = 1; // Compute basisvalues const double basisvalue0 = 0.866025403784439*psitilde_a_0*scalings_y_0*psitilde_bs_0_0*scalings_z_0*psitilde_cs_00_0; // Table(s) of coefficients const static double coefficients0[1][1] = \ {{1.15470053837925}}; // Interesting (new) part // Tables of derivatives of the polynomial base (transpose) const static double dmats0[1][1] = \ {{0}}; const static double dmats1[1][1] = \ {{0}}; const static double dmats2[1][1] = \ {{0}}; // Compute reference derivatives // Declare pointer to array of derivatives on FIAT element double *derivatives = new double [num_derivatives]; // Declare coefficients double coeff0_0 = 0; // Declare new coefficients double new_coeff0_0 = 0; // Loop possible derivatives for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++) { // Get values from coefficients array new_coeff0_0 = coefficients0[dof][0]; // Loop derivative order for (unsigned int j = 0; j < n; j++) { // Update old coefficients coeff0_0 = new_coeff0_0; if(combinations[deriv_num][j] == 0) { new_coeff0_0 = coeff0_0*dmats0[0][0]; } if(combinations[deriv_num][j] == 1) { new_coeff0_0 = coeff0_0*dmats1[0][0]; } if(combinations[deriv_num][j] == 2) { new_coeff0_0 = coeff0_0*dmats2[0][0]; } } // Compute derivatives on reference element as dot product of coefficients and basisvalues derivatives[deriv_num] = new_coeff0_0*basisvalue0; } // Transform derivatives back to physical element for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { values[num_derivatives + row] += transform[row][col]*derivatives[col]; } } // Delete pointer to array of derivatives on FIAT element delete [] derivatives; // Delete pointer to array of combinations of derivatives delete [] combinations; } if (2 <= i and i <= 2) { // Map degree of freedom to element degree of freedom const unsigned int dof = i - 2; // Generate scalings const double scalings_y_0 = 1; const double scalings_z_0 = 1; // Compute psitilde_a const double psitilde_a_0 = 1; // Compute psitilde_bs const double psitilde_bs_0_0 = 1; // Compute psitilde_cs const double psitilde_cs_00_0 = 1; // Compute basisvalues const double basisvalue0 = 0.866025403784439*psitilde_a_0*scalings_y_0*psitilde_bs_0_0*scalings_z_0*psitilde_cs_00_0; // Table(s) of coefficients const static double coefficients0[1][1] = \ {{1.15470053837925}}; // Interesting (new) part // Tables of derivatives of the polynomial base (transpose) const static double dmats0[1][1] = \ {{0}}; const static double dmats1[1][1] = \ {{0}}; const static double dmats2[1][1] = \ {{0}}; // Compute reference derivatives // Declare pointer to array of derivatives on FIAT element double *derivatives = new double [num_derivatives]; // Declare coefficients double coeff0_0 = 0; // Declare new coefficients double new_coeff0_0 = 0; // Loop possible derivatives for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++) { // Get values from coefficients array new_coeff0_0 = coefficients0[dof][0]; // Loop derivative order for (unsigned int j = 0; j < n; j++) { // Update old coefficients coeff0_0 = new_coeff0_0; if(combinations[deriv_num][j] == 0) { new_coeff0_0 = coeff0_0*dmats0[0][0]; } if(combinations[deriv_num][j] == 1) { new_coeff0_0 = coeff0_0*dmats1[0][0]; } if(combinations[deriv_num][j] == 2) { new_coeff0_0 = coeff0_0*dmats2[0][0]; } } // Compute derivatives on reference element as dot product of coefficients and basisvalues derivatives[deriv_num] = new_coeff0_0*basisvalue0; } // Transform derivatives back to physical element for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { values[2*num_derivatives + row] += transform[row][col]*derivatives[col]; } } // Delete pointer to array of derivatives on FIAT element delete [] derivatives; // Delete pointer to array of combinations of derivatives delete [] combinations; } } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { double values[3]; double coordinates[3]; // Nodal coordinates on reference cell static double X[3][3] = {{0.25, 0.25, 0.25}, {0.25, 0.25, 0.25}, {0.25, 0.25, 0.25}}; // Components for each dof static unsigned int components[3] = {0, 1, 2}; // Extract vertex coordinates const double * const * x = c.coordinates; // Evaluate basis functions for affine mapping const double w0 = 1.0 - X[i][0] - X[i][1] - X[i][2]; const double w1 = X[i][0]; const double w2 = X[i][1]; const double w3 = X[i][2]; // Compute affine mapping x = F(X) coordinates[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0] + w3*x[3][0]; coordinates[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1] + w3*x[3][1]; coordinates[2] = w0*x[0][2] + w1*x[1][2] + w2*x[2][2] + w3*x[3][2]; // Evaluate function at coordinates f.evaluate(values, coordinates, c); // Pick component for evaluation return values[components[i]]; } /// Interpolate vertex values from dof values virtual void interpolate_vertex_values(double* vertex_values, const double* dof_values, const ufc::cell& c) const { // Evaluate at vertices and use affine mapping vertex_values[0] = dof_values[0]; vertex_values[1] = dof_values[0]; vertex_values[2] = dof_values[0]; vertex_values[3] = dof_values[0]; // Evaluate at vertices and use affine mapping vertex_values[4] = dof_values[1]; vertex_values[5] = dof_values[1]; vertex_values[6] = dof_values[1]; vertex_values[7] = dof_values[1]; // Evaluate at vertices and use affine mapping vertex_values[8] = dof_values[2]; vertex_values[9] = dof_values[2]; vertex_values[10] = dof_values[2]; vertex_values[11] = dof_values[2]; } /// Return the number of sub elements (for a mixed element) virtual unsigned int num_sub_elements() const { return 3; } /// Create a new finite element for sub element i (for a mixed element) virtual ufc::finite_element* create_sub_element(unsigned int i) const { switch ( i ) { cas
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -