📄 ffc_26.h
字号:
double coeff0_1 = 0; double coeff0_2 = 0; double coeff1_0 = 0; double coeff1_1 = 0; double coeff1_2 = 0; // Declare new coefficients double new_coeff0_0 = 0; double new_coeff0_1 = 0; double new_coeff0_2 = 0; double new_coeff1_0 = 0; double new_coeff1_1 = 0; double new_coeff1_2 = 0; // Loop possible derivatives for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++) { // Get values from coefficients array new_coeff0_0 = coefficients0[dof][0]; new_coeff0_1 = coefficients0[dof][1]; new_coeff0_2 = coefficients0[dof][2]; new_coeff1_0 = coefficients1[dof][0]; new_coeff1_1 = coefficients1[dof][1]; new_coeff1_2 = coefficients1[dof][2]; // Loop derivative order for (unsigned int j = 0; j < n; j++) { // Update old coefficients coeff0_0 = new_coeff0_0; coeff0_1 = new_coeff0_1; coeff0_2 = new_coeff0_2; coeff1_0 = new_coeff1_0; coeff1_1 = new_coeff1_1; coeff1_2 = new_coeff1_2; if(combinations[deriv_num][j] == 0) { new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0]; new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1]; new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2]; new_coeff1_0 = coeff1_0*dmats0[0][0] + coeff1_1*dmats0[1][0] + coeff1_2*dmats0[2][0]; new_coeff1_1 = coeff1_0*dmats0[0][1] + coeff1_1*dmats0[1][1] + coeff1_2*dmats0[2][1]; new_coeff1_2 = coeff1_0*dmats0[0][2] + coeff1_1*dmats0[1][2] + coeff1_2*dmats0[2][2]; } if(combinations[deriv_num][j] == 1) { new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0]; new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1]; new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2]; new_coeff1_0 = coeff1_0*dmats1[0][0] + coeff1_1*dmats1[1][0] + coeff1_2*dmats1[2][0]; new_coeff1_1 = coeff1_0*dmats1[0][1] + coeff1_1*dmats1[1][1] + coeff1_2*dmats1[2][1]; new_coeff1_2 = coeff1_0*dmats1[0][2] + coeff1_1*dmats1[1][2] + coeff1_2*dmats1[2][2]; } } // Compute derivatives on reference element as dot product of coefficients and basisvalues derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2; derivatives[num_derivatives + deriv_num] = new_coeff1_0*basisvalue0 + new_coeff1_1*basisvalue1 + new_coeff1_2*basisvalue2; } // Transform derivatives back to physical element for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { values[row] += transform[row][col]*derivatives[col]; values[num_derivatives + row] += transform[row][col]*derivatives[num_derivatives + col]; } } // Delete pointer to array of derivatives on FIAT element delete [] derivatives; // Delete pointer to array of combinations of derivatives delete [] combinations; } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { throw std::runtime_error("evaluate_dof not implemented for this type of element"); } /// Interpolate vertex values from dof values virtual void interpolate_vertex_values(double* vertex_values, const double* dof_values, const ufc::cell& c) const { // Extract vertex coordinates const double * const * x = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = x[1][0] - x[0][0]; const double J_01 = x[2][0] - x[0][0]; const double J_10 = x[1][1] - x[0][1]; const double J_11 = x[2][1] - x[0][1]; // Compute determinant of Jacobian double detJ = J_00*J_11 - J_01*J_10; // Compute inverse of Jacobian // Take absolute value of determinant detJ = std::abs(detJ); // Compute signs of edges (need to flip edge degrees of freedom) // Compute the edges const double e0_0 = x[2][0] - x[1][0]; const double e0_1 = x[2][1] - x[1][1]; const double e1_0 = x[2][0] - x[0][0]; const double e1_1 = x[2][1] - x[0][1]; const double e2_0 = x[1][0] - x[0][0]; const double e2_1 = x[1][1] - x[0][1]; // Compute edges normals by rotating edges 90 degrees clockwise const double n0_0 = e0_1; const double n0_1 = -e0_0; const double n1_0 = e1_1; const double n1_1 = -e1_0; const double n2_0 = e2_1; const double n2_1 = -e2_0; // Compute the orientation of the normals relative to the cell int sign_facet0 = n0_0*e2_0 + n0_1*e2_1 > 0 ? 1 : -1; int sign_facet1 = n1_0*e0_0 + n1_1*e0_1 > 0 ? 1 : -1; int sign_facet2 = n2_0*e1_0 + n2_1*e1_1 < 0 ? 1 : -1; // Evaluate at vertices and use Piola mapping vertex_values[0] = (1.0/detJ)*(sign_facet1*dof_values[2]*2*J_00 + sign_facet1*dof_values[3]*J_00 + sign_facet2*dof_values[4]*(-2*J_01) + sign_facet2*dof_values[5]*J_01); vertex_values[1] = (1.0/detJ)*(sign_facet0*dof_values[0]*2*J_00 + sign_facet0*dof_values[1]*J_00 + sign_facet2*dof_values[4]*(J_00 + J_01) + sign_facet2*dof_values[5]*(2*J_00 - 2*J_01)); vertex_values[2] = (1.0/detJ)*(sign_facet0*dof_values[0]*J_01 + sign_facet0*dof_values[1]*2*J_01 + sign_facet1*dof_values[2]*(J_00 + J_01) + sign_facet1*dof_values[3]*(2*J_00 - 2*J_01)); vertex_values[3] = (1.0/detJ)*(sign_facet1*dof_values[2]*2*J_10 + sign_facet1*dof_values[3]*J_10 + sign_facet2*dof_values[4]*(-2*J_11) + sign_facet2*dof_values[5]*J_11); vertex_values[4] = (1.0/detJ)*(sign_facet0*dof_values[0]*2*J_10 + sign_facet0*dof_values[1]*J_10 + sign_facet2*dof_values[4]*(J_10 + J_11) + sign_facet2*dof_values[5]*(2*J_10 - 2*J_11)); vertex_values[5] = (1.0/detJ)*(sign_facet0*dof_values[0]*J_11 + sign_facet0*dof_values[1]*2*J_11 + sign_facet1*dof_values[2]*(J_10 + J_11) + sign_facet1*dof_values[3]*(2*J_10 - 2*J_11)); } /// Return the number of sub elements (for a mixed element) virtual unsigned int num_sub_elements() const { return 1; } /// Create a new finite element for sub element i (for a mixed element) virtual ufc::finite_element* create_sub_element(unsigned int i) const { return new ffc_26_finite_element_0(); }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class ffc_26_dof_map_0: public ufc::dof_map{private: unsigned int __global_dimension;public: /// Constructor ffc_26_dof_map_0() : ufc::dof_map() { __global_dimension = 0; } /// Destructor virtual ~ffc_26_dof_map_0() { // Do nothing } /// Return a string identifying the dof map virtual const char* signature() const { return "FFC dof map for Brezzi-Douglas-Marini finite element of degree 1 on a triangle"; } /// Return true iff mesh entities of topological dimension d are needed virtual bool needs_mesh_entities(unsigned int d) const { switch ( d ) { case 0: return false; break; case 1: return true; break; case 2: return false; break; } return false; } /// Initialize dof map for mesh (return true iff init_cell() is needed) virtual bool init_mesh(const ufc::mesh& m) { __global_dimension = 2*m.num_entities[1]; return false; } /// Initialize dof map for given cell virtual void init_cell(const ufc::mesh& m, const ufc::cell& c) { // Do nothing } /// Finish initialization of dof map for cells virtual void init_cell_finalize() { // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 6; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 2; } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = 2*c.entity_indices[1][0]; dofs[1] = 2*c.entity_indices[1][0] + 1; dofs[2] = 2*c.entity_indices[1][1]; dofs[3] = 2*c.entity_indices[1][1] + 1; dofs[4] = 2*c.entity_indices[1][2]; dofs[5] = 2*c.entity_indices[1][2] + 1; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: dofs[0] = 0; dofs[1] = 1; break; case 1: dofs[0] = 2; dofs[1] = 3; break; case 2: dofs[0] = 4; dofs[1] = 5; break; } } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { throw std::runtime_error("tabulate_coordinates not implemented for this type of element"); } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 1; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new ffc_26_dof_map_0(); }};#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -