⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ffc_26.h

📁 Dolfin provide a high-performance linear algebra library
💻 H
📖 第 1 页 / 共 2 页
字号:
    double coeff0_1 = 0;    double coeff0_2 = 0;    double coeff1_0 = 0;    double coeff1_1 = 0;    double coeff1_2 = 0;        // Declare new coefficients    double new_coeff0_0 = 0;    double new_coeff0_1 = 0;    double new_coeff0_2 = 0;    double new_coeff1_0 = 0;    double new_coeff1_1 = 0;    double new_coeff1_2 = 0;        // Loop possible derivatives    for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)    {      // Get values from coefficients array      new_coeff0_0 = coefficients0[dof][0];      new_coeff0_1 = coefficients0[dof][1];      new_coeff0_2 = coefficients0[dof][2];      new_coeff1_0 = coefficients1[dof][0];      new_coeff1_1 = coefficients1[dof][1];      new_coeff1_2 = coefficients1[dof][2];          // Loop derivative order      for (unsigned int j = 0; j < n; j++)      {        // Update old coefficients        coeff0_0 = new_coeff0_0;        coeff0_1 = new_coeff0_1;        coeff0_2 = new_coeff0_2;        coeff1_0 = new_coeff1_0;        coeff1_1 = new_coeff1_1;        coeff1_2 = new_coeff1_2;            if(combinations[deriv_num][j] == 0)        {          new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];          new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];          new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];          new_coeff1_0 = coeff1_0*dmats0[0][0] + coeff1_1*dmats0[1][0] + coeff1_2*dmats0[2][0];          new_coeff1_1 = coeff1_0*dmats0[0][1] + coeff1_1*dmats0[1][1] + coeff1_2*dmats0[2][1];          new_coeff1_2 = coeff1_0*dmats0[0][2] + coeff1_1*dmats0[1][2] + coeff1_2*dmats0[2][2];        }        if(combinations[deriv_num][j] == 1)        {          new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];          new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];          new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];          new_coeff1_0 = coeff1_0*dmats1[0][0] + coeff1_1*dmats1[1][0] + coeff1_2*dmats1[2][0];          new_coeff1_1 = coeff1_0*dmats1[0][1] + coeff1_1*dmats1[1][1] + coeff1_2*dmats1[2][1];          new_coeff1_2 = coeff1_0*dmats1[0][2] + coeff1_1*dmats1[1][2] + coeff1_2*dmats1[2][2];        }          }      // Compute derivatives on reference element as dot product of coefficients and basisvalues      derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;      derivatives[num_derivatives + deriv_num] = new_coeff1_0*basisvalue0 + new_coeff1_1*basisvalue1 + new_coeff1_2*basisvalue2;    }        // Transform derivatives back to physical element    for (unsigned int row = 0; row < num_derivatives; row++)    {      for (unsigned int col = 0; col < num_derivatives; col++)      {        values[row] += transform[row][col]*derivatives[col];        values[num_derivatives + row] += transform[row][col]*derivatives[num_derivatives + col];      }    }    // Delete pointer to array of derivatives on FIAT element    delete [] derivatives;        // Delete pointer to array of combinations of derivatives    delete [] combinations;      }  /// Evaluate linear functional for dof i on the function f  virtual double evaluate_dof(unsigned int i,                              const ufc::function& f,                              const ufc::cell& c) const  {    throw std::runtime_error("evaluate_dof not implemented for this type of element");  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * x = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = x[1][0] - x[0][0];    const double J_01 = x[2][0] - x[0][0];    const double J_10 = x[1][1] - x[0][1];    const double J_11 = x[2][1] - x[0][1];          // Compute determinant of Jacobian    double detJ = J_00*J_11 - J_01*J_10;          // Compute inverse of Jacobian        // Take absolute value of determinant    detJ = std::abs(detJ);        // Compute signs of edges (need to flip edge degrees of freedom)        // Compute the edges    const double e0_0 = x[2][0] - x[1][0];    const double e0_1 = x[2][1] - x[1][1];    const double e1_0 = x[2][0] - x[0][0];    const double e1_1 = x[2][1] - x[0][1];    const double e2_0 = x[1][0] - x[0][0];    const double e2_1 = x[1][1] - x[0][1];        // Compute edges normals by rotating edges 90 degrees clockwise    const double n0_0 = e0_1;    const double n0_1 = -e0_0;    const double n1_0 = e1_1;    const double n1_1 = -e1_0;    const double n2_0 = e2_1;    const double n2_1 = -e2_0;        // Compute the orientation of the normals relative to the cell    int sign_facet0 = n0_0*e2_0 + n0_1*e2_1 > 0 ? 1 : -1;    int sign_facet1 = n1_0*e0_0 + n1_1*e0_1 > 0 ? 1 : -1;    int sign_facet2 = n2_0*e1_0 + n2_1*e1_1 < 0 ? 1 : -1;        // Evaluate at vertices and use Piola mapping    vertex_values[0] = (1.0/detJ)*(sign_facet1*dof_values[2]*2*J_00 + sign_facet1*dof_values[3]*J_00 + sign_facet2*dof_values[4]*(-2*J_01) + sign_facet2*dof_values[5]*J_01);    vertex_values[1] = (1.0/detJ)*(sign_facet0*dof_values[0]*2*J_00 + sign_facet0*dof_values[1]*J_00 + sign_facet2*dof_values[4]*(J_00 + J_01) + sign_facet2*dof_values[5]*(2*J_00 - 2*J_01));    vertex_values[2] = (1.0/detJ)*(sign_facet0*dof_values[0]*J_01 + sign_facet0*dof_values[1]*2*J_01 + sign_facet1*dof_values[2]*(J_00 + J_01) + sign_facet1*dof_values[3]*(2*J_00 - 2*J_01));    vertex_values[3] = (1.0/detJ)*(sign_facet1*dof_values[2]*2*J_10 + sign_facet1*dof_values[3]*J_10 + sign_facet2*dof_values[4]*(-2*J_11) + sign_facet2*dof_values[5]*J_11);    vertex_values[4] = (1.0/detJ)*(sign_facet0*dof_values[0]*2*J_10 + sign_facet0*dof_values[1]*J_10 + sign_facet2*dof_values[4]*(J_10 + J_11) + sign_facet2*dof_values[5]*(2*J_10 - 2*J_11));    vertex_values[5] = (1.0/detJ)*(sign_facet0*dof_values[0]*J_11 + sign_facet0*dof_values[1]*2*J_11 + sign_facet1*dof_values[2]*(J_10 + J_11) + sign_facet1*dof_values[3]*(2*J_10 - 2*J_11));  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const  {    return 1;  }  /// Create a new finite element for sub element i (for a mixed element)  virtual ufc::finite_element* create_sub_element(unsigned int i) const  {    return new ffc_26_finite_element_0();  }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class ffc_26_dof_map_0: public ufc::dof_map{private:  unsigned int __global_dimension;public:  /// Constructor  ffc_26_dof_map_0() : ufc::dof_map()  {    __global_dimension = 0;  }  /// Destructor  virtual ~ffc_26_dof_map_0()  {    // Do nothing  }  /// Return a string identifying the dof map  virtual const char* signature() const  {    return "FFC dof map for Brezzi-Douglas-Marini finite element of degree 1 on a triangle";  }  /// Return true iff mesh entities of topological dimension d are needed  virtual bool needs_mesh_entities(unsigned int d) const  {    switch ( d )    {    case 0:      return false;      break;    case 1:      return true;      break;    case 2:      return false;      break;    }    return false;  }  /// Initialize dof map for mesh (return true iff init_cell() is needed)  virtual bool init_mesh(const ufc::mesh& m)  {    __global_dimension = 2*m.num_entities[1];    return false;  }  /// Initialize dof map for given cell  virtual void init_cell(const ufc::mesh& m,                         const ufc::cell& c)  {    // Do nothing  }  /// Finish initialization of dof map for cells  virtual void init_cell_finalize()  {    // Do nothing  }  /// Return the dimension of the global finite element function space  virtual unsigned int global_dimension() const  {    return __global_dimension;  }  /// Return the dimension of the local finite element function space  virtual unsigned int local_dimension() const  {    return 6;  }  /// Return the number of dofs on each cell facet  virtual unsigned int num_facet_dofs() const  {    return 2;  }  /// Tabulate the local-to-global mapping of dofs on a cell  virtual void tabulate_dofs(unsigned int* dofs,                             const ufc::mesh& m,                             const ufc::cell& c) const  {    dofs[0] = 2*c.entity_indices[1][0];    dofs[1] = 2*c.entity_indices[1][0] + 1;    dofs[2] = 2*c.entity_indices[1][1];    dofs[3] = 2*c.entity_indices[1][1] + 1;    dofs[4] = 2*c.entity_indices[1][2];    dofs[5] = 2*c.entity_indices[1][2] + 1;  }  /// Tabulate the local-to-local mapping from facet dofs to cell dofs  virtual void tabulate_facet_dofs(unsigned int* dofs,                                   unsigned int facet) const  {    switch ( facet )    {    case 0:      dofs[0] = 0;      dofs[1] = 1;      break;    case 1:      dofs[0] = 2;      dofs[1] = 3;      break;    case 2:      dofs[0] = 4;      dofs[1] = 5;      break;    }  }  /// Tabulate the coordinates of all dofs on a cell  virtual void tabulate_coordinates(double** coordinates,                                    const ufc::cell& c) const  {    throw std::runtime_error("tabulate_coordinates not implemented for this type of element");  }  /// Return the number of sub dof maps (for a mixed element)  virtual unsigned int num_sub_dof_maps() const  {    return 1;  }  /// Create a new dof_map for sub dof map i (for a mixed element)  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const  {    return new ffc_26_dof_map_0();  }};#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -