📄 ffc_11.h
字号:
} // Compute derivatives on reference element as dot product of coefficients and basisvalues derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2 + new_coeff0_3*basisvalue3 + new_coeff0_4*basisvalue4 + new_coeff0_5*basisvalue5 + new_coeff0_6*basisvalue6 + new_coeff0_7*basisvalue7 + new_coeff0_8*basisvalue8 + new_coeff0_9*basisvalue9; } // Transform derivatives back to physical element for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { values[row] += transform[row][col]*derivatives[col]; } } // Delete pointer to array of derivatives on FIAT element delete [] derivatives; // Delete pointer to array of combinations of derivatives delete [] combinations; } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { double values[1]; double coordinates[3]; // Nodal coordinates on reference cell static double X[10][3] = {{0, 0, 0}, {0.5, 0, 0}, {1, 0, 0}, {0, 0.5, 0}, {0.5, 0.5, 0}, {0, 1, 0}, {0, 0, 0.5}, {0.5, 0, 0.5}, {0, 0.5, 0.5}, {0, 0, 1}}; // Components for each dof static unsigned int components[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // Extract vertex coordinates const double * const * x = c.coordinates; // Evaluate basis functions for affine mapping const double w0 = 1.0 - X[i][0] - X[i][1] - X[i][2]; const double w1 = X[i][0]; const double w2 = X[i][1]; const double w3 = X[i][2]; // Compute affine mapping x = F(X) coordinates[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0] + w3*x[3][0]; coordinates[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1] + w3*x[3][1]; coordinates[2] = w0*x[0][2] + w1*x[1][2] + w2*x[2][2] + w3*x[3][2]; // Evaluate function at coordinates f.evaluate(values, coordinates, c); // Pick component for evaluation return values[components[i]]; } /// Interpolate vertex values from dof values virtual void interpolate_vertex_values(double* vertex_values, const double* dof_values, const ufc::cell& c) const { // Evaluate at vertices and use affine mapping vertex_values[0] = dof_values[0]; vertex_values[1] = dof_values[2]; vertex_values[2] = dof_values[5]; vertex_values[3] = dof_values[9]; } /// Return the number of sub elements (for a mixed element) virtual unsigned int num_sub_elements() const { return 1; } /// Create a new finite element for sub element i (for a mixed element) virtual ufc::finite_element* create_sub_element(unsigned int i) const { return new ffc_11_finite_element_0(); }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class ffc_11_dof_map_0: public ufc::dof_map{private: unsigned int __global_dimension;public: /// Constructor ffc_11_dof_map_0() : ufc::dof_map() { __global_dimension = 0; } /// Destructor virtual ~ffc_11_dof_map_0() { // Do nothing } /// Return a string identifying the dof map virtual const char* signature() const { return "FFC dof map for Discontinuous Lagrange finite element of degree 2 on a tetrahedron"; } /// Return true iff mesh entities of topological dimension d are needed virtual bool needs_mesh_entities(unsigned int d) const { switch ( d ) { case 0: return false; break; case 1: return false; break; case 2: return false; break; case 3: return true; break; } return false; } /// Initialize dof map for mesh (return true iff init_cell() is needed) virtual bool init_mesh(const ufc::mesh& m) { __global_dimension = 10*m.num_entities[3]; return false; } /// Initialize dof map for given cell virtual void init_cell(const ufc::mesh& m, const ufc::cell& c) { // Do nothing } /// Finish initialization of dof map for cells virtual void init_cell_finalize() { // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 10; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 0; } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = 10*c.entity_indices[3][0]; dofs[1] = 10*c.entity_indices[3][0] + 1; dofs[2] = 10*c.entity_indices[3][0] + 2; dofs[3] = 10*c.entity_indices[3][0] + 3; dofs[4] = 10*c.entity_indices[3][0] + 4; dofs[5] = 10*c.entity_indices[3][0] + 5; dofs[6] = 10*c.entity_indices[3][0] + 6; dofs[7] = 10*c.entity_indices[3][0] + 7; dofs[8] = 10*c.entity_indices[3][0] + 8; dofs[9] = 10*c.entity_indices[3][0] + 9; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: break; case 1: break; case 2: break; case 3: break; } } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { const double * const * x = c.coordinates; coordinates[0][0] = x[0][0]; coordinates[0][1] = x[0][1]; coordinates[0][2] = x[0][2]; coordinates[1][0] = 0.5*x[0][0] + 0.5*x[1][0]; coordinates[1][1] = 0.5*x[0][1] + 0.5*x[1][1]; coordinates[1][2] = 0.5*x[0][2] + 0.5*x[1][2]; coordinates[2][0] = x[1][0]; coordinates[2][1] = x[1][1]; coordinates[2][2] = x[1][2]; coordinates[3][0] = 0.5*x[0][0] + 0.5*x[2][0]; coordinates[3][1] = 0.5*x[0][1] + 0.5*x[2][1]; coordinates[3][2] = 0.5*x[0][2] + 0.5*x[2][2]; coordinates[4][0] = 0.5*x[1][0] + 0.5*x[2][0]; coordinates[4][1] = 0.5*x[1][1] + 0.5*x[2][1]; coordinates[4][2] = 0.5*x[1][2] + 0.5*x[2][2]; coordinates[5][0] = x[2][0]; coordinates[5][1] = x[2][1]; coordinates[5][2] = x[2][2]; coordinates[6][0] = 0.5*x[0][0] + 0.5*x[3][0]; coordinates[6][1] = 0.5*x[0][1] + 0.5*x[3][1]; coordinates[6][2] = 0.5*x[0][2] + 0.5*x[3][2]; coordinates[7][0] = 0.5*x[1][0] + 0.5*x[3][0]; coordinates[7][1] = 0.5*x[1][1] + 0.5*x[3][1]; coordinates[7][2] = 0.5*x[1][2] + 0.5*x[3][2]; coordinates[8][0] = 0.5*x[2][0] + 0.5*x[3][0]; coordinates[8][1] = 0.5*x[2][1] + 0.5*x[3][1]; coordinates[8][2] = 0.5*x[2][2] + 0.5*x[3][2]; coordinates[9][0] = x[3][0]; coordinates[9][1] = x[3][1]; coordinates[9][2] = x[3][2]; } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 1; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new ffc_11_dof_map_0(); }};#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -