⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ffc_19.h

📁 Dolfin provide a high-performance linear algebra library
💻 H
📖 第 1 页 / 共 4 页
字号:
      // Compute basisvalues      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;          // Table(s) of coefficients      const static double coefficients0[1][1] =   \      {{1.41421356237309}};          // Extract relevant coefficients      const double coeff0_0 =   coefficients0[dof][0];          // Compute value(s)      values[0] = coeff0_0*basisvalue0;    }        if (1 <= i and i <= 1)    {      // Map degree of freedom to element degree of freedom      const unsigned int dof = i - 1;          // Generate scalings      const double scalings_y_0 = 1;          // Compute psitilde_a      const double psitilde_a_0 = 1;          // Compute psitilde_bs      const double psitilde_bs_0_0 = 1;          // Compute basisvalues      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;          // Table(s) of coefficients      const static double coefficients0[1][1] =   \      {{1.41421356237309}};          // Extract relevant coefficients      const double coeff0_0 =   coefficients0[dof][0];          // Compute value(s)      values[1] = coeff0_0*basisvalue0;    }      }  /// Evaluate order n derivatives of basis function i at given point in cell  virtual void evaluate_basis_derivatives(unsigned int i,                                          unsigned int n,                                          double* values,                                          const double* coordinates,                                          const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * element_coordinates = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];          // Compute determinant of Jacobian    const double detJ = J_00*J_11 - J_01*J_10;        // Compute constants    const double C0 = element_coordinates[1][0] + element_coordinates[2][0];    const double C1 = element_coordinates[1][1] + element_coordinates[2][1];        // Get coordinates and map to the reference (FIAT) element    double x = (J_01*C1 - J_11*C0 + 2.0*J_11*coordinates[0] - 2.0*J_01*coordinates[1]) / detJ;    double y = (J_10*C0 - J_00*C1 - 2.0*J_10*coordinates[0] + 2.0*J_00*coordinates[1]) / detJ;        // Map coordinates to the reference square    if (std::abs(y - 1.0) < 1e-14)      x = -1.0;    else      x = 2.0 * (1.0 + x)/(1.0 - y) - 1.0;        // Compute number of derivatives    unsigned int num_derivatives = 1;        for (unsigned int j = 0; j < n; j++)      num_derivatives *= 2;            // Declare pointer to two dimensional array that holds combinations of derivatives and initialise    unsigned int **combinations = new unsigned int *[num_derivatives];            for (unsigned int j = 0; j < num_derivatives; j++)    {      combinations[j] = new unsigned int [n];      for (unsigned int k = 0; k < n; k++)        combinations[j][k] = 0;    }            // Generate combinations of derivatives    for (unsigned int row = 1; row < num_derivatives; row++)    {      for (unsigned int num = 0; num < row; num++)      {        for (unsigned int col = n-1; col+1 > 0; col--)        {          if (combinations[row][col] + 1 > 1)            combinations[row][col] = 0;          else          {            combinations[row][col] += 1;            break;          }        }      }    }        // Compute inverse of Jacobian, components are scaled because of difference in FFC/FIAT reference elements    const double Jinv[2][2] =  {{2*J_11 / detJ, -2*J_01 / detJ}, {-2*J_10 / detJ, 2*J_00 / detJ}};        // Declare transformation matrix    // Declare pointer to two dimensional array and initialise    double **transform = new double *[num_derivatives];            for (unsigned int j = 0; j < num_derivatives; j++)    {      transform[j] = new double [num_derivatives];      for (unsigned int k = 0; k < num_derivatives; k++)        transform[j][k] = 1;    }        // Construct transformation matrix    for (unsigned int row = 0; row < num_derivatives; row++)    {      for (unsigned int col = 0; col < num_derivatives; col++)      {        for (unsigned int k = 0; k < n; k++)          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];      }    }        // Reset values    for (unsigned int j = 0; j < 2*num_derivatives; j++)      values[j] = 0;        if (0 <= i and i <= 0)    {      // Map degree of freedom to element degree of freedom      const unsigned int dof = i;          // Generate scalings      const double scalings_y_0 = 1;          // Compute psitilde_a      const double psitilde_a_0 = 1;          // Compute psitilde_bs      const double psitilde_bs_0_0 = 1;          // Compute basisvalues      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;          // Table(s) of coefficients      const static double coefficients0[1][1] =   \      {{1.41421356237309}};          // Interesting (new) part      // Tables of derivatives of the polynomial base (transpose)      const static double dmats0[1][1] =   \      {{0}};          const static double dmats1[1][1] =   \      {{0}};          // Compute reference derivatives      // Declare pointer to array of derivatives on FIAT element      double *derivatives = new double [num_derivatives];          // Declare coefficients      double coeff0_0 = 0;          // Declare new coefficients      double new_coeff0_0 = 0;          // Loop possible derivatives      for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)      {        // Get values from coefficients array        new_coeff0_0 = coefficients0[dof][0];            // Loop derivative order        for (unsigned int j = 0; j < n; j++)        {          // Update old coefficients          coeff0_0 = new_coeff0_0;              if(combinations[deriv_num][j] == 0)          {            new_coeff0_0 = coeff0_0*dmats0[0][0];          }          if(combinations[deriv_num][j] == 1)          {            new_coeff0_0 = coeff0_0*dmats1[0][0];          }            }        // Compute derivatives on reference element as dot product of coefficients and basisvalues        derivatives[deriv_num] = new_coeff0_0*basisvalue0;      }          // Transform derivatives back to physical element      for (unsigned int row = 0; row < num_derivatives; row++)      {        for (unsigned int col = 0; col < num_derivatives; col++)        {          values[row] += transform[row][col]*derivatives[col];        }      }      // Delete pointer to array of derivatives on FIAT element      delete [] derivatives;          // Delete pointer to array of combinations of derivatives      delete [] combinations;        }        if (1 <= i and i <= 1)    {      // Map degree of freedom to element degree of freedom      const unsigned int dof = i - 1;          // Generate scalings      const double scalings_y_0 = 1;          // Compute psitilde_a      const double psitilde_a_0 = 1;          // Compute psitilde_bs      const double psitilde_bs_0_0 = 1;          // Compute basisvalues      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;          // Table(s) of coefficients      const static double coefficients0[1][1] =   \      {{1.41421356237309}};          // Interesting (new) part      // Tables of derivatives of the polynomial base (transpose)      const static double dmats0[1][1] =   \      {{0}};          const static double dmats1[1][1] =   \      {{0}};          // Compute reference derivatives      // Declare pointer to array of derivatives on FIAT element      double *derivatives = new double [num_derivatives];          // Declare coefficients      double coeff0_0 = 0;          // Declare new coefficients      double new_coeff0_0 = 0;          // Loop possible derivatives      for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)      {        // Get values from coefficients array        new_coeff0_0 = coefficients0[dof][0];            // Loop derivative order        for (unsigned int j = 0; j < n; j++)        {          // Update old coefficients          coeff0_0 = new_coeff0_0;              if(combinations[deriv_num][j] == 0)          {            new_coeff0_0 = coeff0_0*dmats0[0][0];          }          if(combinations[deriv_num][j] == 1)          {            new_coeff0_0 = coeff0_0*dmats1[0][0];          }            }        // Compute derivatives on reference element as dot product of coefficients and basisvalues        derivatives[deriv_num] = new_coeff0_0*basisvalue0;      }          // Transform derivatives back to physical element      for (unsigned int row = 0; row < num_derivatives; row++)      {        for (unsigned int col = 0; col < num_derivatives; col++)        {          values[num_derivatives + row] += transform[row][col]*derivatives[col];        }      }      // Delete pointer to array of derivatives on FIAT element      delete [] derivatives;          // Delete pointer to array of combinations of derivatives      delete [] combinations;        }      }  /// Evaluate linear functional for dof i on the function f  virtual double evaluate_dof(unsigned int i,                              const ufc::function& f,                              const ufc::cell& c) const  {    double values[2];    double coordinates[2];        // Nodal coordinates on reference cell    static double X[2][2] = {{0.333333333333333, 0.333333333333333}, {0.333333333333333, 0.333333333333333}};        // Components for each dof    static unsigned int components[2] = {0, 1};        // Extract vertex coordinates    const double * const * x = c.coordinates;        // Evaluate basis functions for affine mapping    const double w0 = 1.0 - X[i][0] - X[i][1];    const double w1 = X[i][0];    const double w2 = X[i][1];        // Compute affine mapping x = F(X)    coordinates[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];    coordinates[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];        // Evaluate function at coordinates    f.evaluate(values, coordinates, c);        // Pick component for evaluation    return values[components[i]];  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Evaluate at vertices and use affine mapping    vertex_values[0] = dof_values[0];    vertex_values[1] = dof_values[0];    vertex_values[2] = dof_values[0];    // Evaluate at vertices and use affine mapping    vertex_values[3] = dof_values[1];    vertex_values[4] = dof_values[1];    vertex_values[5] = dof_values[1];  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const  {    return 2;  }  /// Create a new finite element for sub element i (for a mixed element)  virtual ufc::finite_element* create_sub_element(unsigned int i) const  {    switch ( i )    {    case 0:      return new ffc_19_finite_element_0_0();      break;    case 1:      return new ffc_19_finite_element_0_1();      break;    }    return 0;  }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class ffc_19_dof_map_0_0: public ufc::dof_map{private:  unsigned int __global_dimension;public:  /// Constructor  ffc_19_dof_map_0_0() : ufc::dof_map()  {    __global_dimension = 0;  }  /// Destructor  virtual ~ffc_19_dof_map_0_0()  {    // Do nothing

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -