⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ffc_09.h

📁 Dolfin provide a high-performance linear algebra library
💻 H
📖 第 1 页 / 共 2 页
字号:
    // Compute psitilde_a    const double psitilde_a_0 = 1;        // Compute psitilde_bs    const double psitilde_bs_0_0 = 1;        // Compute psitilde_cs    const double psitilde_cs_00_0 = 1;        // Compute basisvalues    const double basisvalue0 = 0.866025403784439*psitilde_a_0*scalings_y_0*psitilde_bs_0_0*scalings_z_0*psitilde_cs_00_0;        // Table(s) of coefficients    const static double coefficients0[1][1] = \    {{1.15470053837925}};        // Interesting (new) part    // Tables of derivatives of the polynomial base (transpose)    const static double dmats0[1][1] = \    {{0}};        const static double dmats1[1][1] = \    {{0}};        const static double dmats2[1][1] = \    {{0}};        // Compute reference derivatives    // Declare pointer to array of derivatives on FIAT element    double *derivatives = new double [num_derivatives];        // Declare coefficients    double coeff0_0 = 0;        // Declare new coefficients    double new_coeff0_0 = 0;        // Loop possible derivatives    for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)    {      // Get values from coefficients array      new_coeff0_0 = coefficients0[dof][0];          // Loop derivative order      for (unsigned int j = 0; j < n; j++)      {        // Update old coefficients        coeff0_0 = new_coeff0_0;            if(combinations[deriv_num][j] == 0)        {          new_coeff0_0 = coeff0_0*dmats0[0][0];        }        if(combinations[deriv_num][j] == 1)        {          new_coeff0_0 = coeff0_0*dmats1[0][0];        }        if(combinations[deriv_num][j] == 2)        {          new_coeff0_0 = coeff0_0*dmats2[0][0];        }          }      // Compute derivatives on reference element as dot product of coefficients and basisvalues      derivatives[deriv_num] = new_coeff0_0*basisvalue0;    }        // Transform derivatives back to physical element    for (unsigned int row = 0; row < num_derivatives; row++)    {      for (unsigned int col = 0; col < num_derivatives; col++)      {        values[row] += transform[row][col]*derivatives[col];      }    }    // Delete pointer to array of derivatives on FIAT element    delete [] derivatives;        // Delete pointer to array of combinations of derivatives    delete [] combinations;      }  /// Evaluate linear functional for dof i on the function f  virtual double evaluate_dof(unsigned int i,                              const ufc::function& f,                              const ufc::cell& c) const  {    double values[1];    double coordinates[3];        // Nodal coordinates on reference cell    static double X[1][3] = {{0.25, 0.25, 0.25}};        // Components for each dof    static unsigned int components[1] = {0};        // Extract vertex coordinates    const double * const * x = c.coordinates;        // Evaluate basis functions for affine mapping    const double w0 = 1.0 - X[i][0] - X[i][1] - X[i][2];    const double w1 = X[i][0];    const double w2 = X[i][1];    const double w3 = X[i][2];        // Compute affine mapping x = F(X)    coordinates[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0] + w3*x[3][0];    coordinates[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1] + w3*x[3][1];    coordinates[2] = w0*x[0][2] + w1*x[1][2] + w2*x[2][2] + w3*x[3][2];        // Evaluate function at coordinates    f.evaluate(values, coordinates, c);        // Pick component for evaluation    return values[components[i]];  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Evaluate at vertices and use affine mapping    vertex_values[0] = dof_values[0];    vertex_values[1] = dof_values[0];    vertex_values[2] = dof_values[0];    vertex_values[3] = dof_values[0];  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const  {    return 1;  }  /// Create a new finite element for sub element i (for a mixed element)  virtual ufc::finite_element* create_sub_element(unsigned int i) const  {    return new ffc_09_finite_element_0();  }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class ffc_09_dof_map_0: public ufc::dof_map{private:  unsigned int __global_dimension;public:  /// Constructor  ffc_09_dof_map_0() : ufc::dof_map()  {    __global_dimension = 0;  }  /// Destructor  virtual ~ffc_09_dof_map_0()  {    // Do nothing  }  /// Return a string identifying the dof map  virtual const char* signature() const  {    return "FFC dof map for Discontinuous Lagrange finite element of degree 0 on a tetrahedron";  }  /// Return true iff mesh entities of topological dimension d are needed  virtual bool needs_mesh_entities(unsigned int d) const  {    switch ( d )    {    case 0:      return false;      break;    case 1:      return false;      break;    case 2:      return false;      break;    case 3:      return true;      break;    }    return false;  }  /// Initialize dof map for mesh (return true iff init_cell() is needed)  virtual bool init_mesh(const ufc::mesh& m)  {    __global_dimension = m.num_entities[3];    return false;  }  /// Initialize dof map for given cell  virtual void init_cell(const ufc::mesh& m,                         const ufc::cell& c)  {    // Do nothing  }  /// Finish initialization of dof map for cells  virtual void init_cell_finalize()  {    // Do nothing  }  /// Return the dimension of the global finite element function space  virtual unsigned int global_dimension() const  {    return __global_dimension;  }  /// Return the dimension of the local finite element function space  virtual unsigned int local_dimension() const  {    return 1;  }  /// Return the number of dofs on each cell facet  virtual unsigned int num_facet_dofs() const  {    return 0;  }  /// Tabulate the local-to-global mapping of dofs on a cell  virtual void tabulate_dofs(unsigned int* dofs,                             const ufc::mesh& m,                             const ufc::cell& c) const  {    dofs[0] = c.entity_indices[3][0];  }  /// Tabulate the local-to-local mapping from facet dofs to cell dofs  virtual void tabulate_facet_dofs(unsigned int* dofs,                                   unsigned int facet) const  {    switch ( facet )    {    case 0:            break;    case 1:            break;    case 2:            break;    case 3:            break;    }  }  /// Tabulate the coordinates of all dofs on a cell  virtual void tabulate_coordinates(double** coordinates,                                    const ufc::cell& c) const  {    const double * const * x = c.coordinates;    coordinates[0][0] = 0.25*x[0][0] + 0.25*x[1][0] + 0.25*x[2][0] + 0.25*x[3][0];    coordinates[0][1] = 0.25*x[0][1] + 0.25*x[1][1] + 0.25*x[2][1] + 0.25*x[3][1];    coordinates[0][2] = 0.25*x[0][2] + 0.25*x[1][2] + 0.25*x[2][2] + 0.25*x[3][2];  }  /// Return the number of sub dof maps (for a mixed element)  virtual unsigned int num_sub_dof_maps() const  {    return 1;  }  /// Create a new dof_map for sub dof map i (for a mixed element)  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const  {    return new ffc_09_dof_map_0();  }};#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -