⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 drag.h

📁 Dolfin provide a high-performance linear algebra library
💻 H
📖 第 1 页 / 共 5 页
字号:
  /// Return the dimension of the global finite element function space  virtual unsigned int global_dimension() const  {    return __global_dimension;  }  /// Return the dimension of the local finite element function space  virtual unsigned int local_dimension() const  {    return 1;  }  /// Return the number of dofs on each cell facet  virtual unsigned int num_facet_dofs() const  {    return 0;  }  /// Tabulate the local-to-global mapping of dofs on a cell  virtual void tabulate_dofs(unsigned int* dofs,                             const ufc::mesh& m,                             const ufc::cell& c) const  {    dofs[0] = c.entity_indices[2][0];  }  /// Tabulate the local-to-local mapping from facet dofs to cell dofs  virtual void tabulate_facet_dofs(unsigned int* dofs,                                   unsigned int facet) const  {    switch ( facet )    {    case 0:            break;    case 1:            break;    case 2:            break;    }  }  /// Tabulate the coordinates of all dofs on a cell  virtual void tabulate_coordinates(double** coordinates,                                    const ufc::cell& c) const  {    const double * const * x = c.coordinates;    coordinates[0][0] = 0.333333333333333*x[0][0] + 0.333333333333333*x[1][0] + 0.333333333333333*x[2][0];    coordinates[0][1] = 0.333333333333333*x[0][1] + 0.333333333333333*x[1][1] + 0.333333333333333*x[2][1];  }  /// Return the number of sub dof maps (for a mixed element)  virtual unsigned int num_sub_dof_maps() const  {    return 1;  }  /// Create a new dof_map for sub dof map i (for a mixed element)  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const  {    return new UFC_DragFunctional_dof_map_1_0();  }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class UFC_DragFunctional_dof_map_1_1: public ufc::dof_map{private:  unsigned int __global_dimension;public:  /// Constructor  UFC_DragFunctional_dof_map_1_1() : ufc::dof_map()  {    __global_dimension = 0;  }  /// Destructor  virtual ~UFC_DragFunctional_dof_map_1_1()  {    // Do nothing  }  /// Return a string identifying the dof map  virtual const char* signature() const  {    return "FFC dof map for Discontinuous Lagrange finite element of degree 0 on a triangle";  }  /// Return true iff mesh entities of topological dimension d are needed  virtual bool needs_mesh_entities(unsigned int d) const  {    switch ( d )    {    case 0:      return false;      break;    case 1:      return false;      break;    case 2:      return true;      break;    }    return false;  }  /// Initialize dof map for mesh (return true iff init_cell() is needed)  virtual bool init_mesh(const ufc::mesh& m)  {    __global_dimension = m.num_entities[2];    return false;  }  /// Initialize dof map for given cell  virtual void init_cell(const ufc::mesh& m,                         const ufc::cell& c)  {    // Do nothing  }  /// Finish initialization of dof map for cells  virtual void init_cell_finalize()  {    // Do nothing  }  /// Return the dimension of the global finite element function space  virtual unsigned int global_dimension() const  {    return __global_dimension;  }  /// Return the dimension of the local finite element function space  virtual unsigned int local_dimension() const  {    return 1;  }  /// Return the number of dofs on each cell facet  virtual unsigned int num_facet_dofs() const  {    return 0;  }  /// Tabulate the local-to-global mapping of dofs on a cell  virtual void tabulate_dofs(unsigned int* dofs,                             const ufc::mesh& m,                             const ufc::cell& c) const  {    dofs[0] = c.entity_indices[2][0];  }  /// Tabulate the local-to-local mapping from facet dofs to cell dofs  virtual void tabulate_facet_dofs(unsigned int* dofs,                                   unsigned int facet) const  {    switch ( facet )    {    case 0:            break;    case 1:            break;    case 2:            break;    }  }  /// Tabulate the coordinates of all dofs on a cell  virtual void tabulate_coordinates(double** coordinates,                                    const ufc::cell& c) const  {    const double * const * x = c.coordinates;    coordinates[0][0] = 0.333333333333333*x[0][0] + 0.333333333333333*x[1][0] + 0.333333333333333*x[2][0];    coordinates[0][1] = 0.333333333333333*x[0][1] + 0.333333333333333*x[1][1] + 0.333333333333333*x[2][1];  }  /// Return the number of sub dof maps (for a mixed element)  virtual unsigned int num_sub_dof_maps() const  {    return 1;  }  /// Create a new dof_map for sub dof map i (for a mixed element)  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const  {    return new UFC_DragFunctional_dof_map_1_1();  }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class UFC_DragFunctional_dof_map_1: public ufc::dof_map{private:  unsigned int __global_dimension;public:  /// Constructor  UFC_DragFunctional_dof_map_1() : ufc::dof_map()  {    __global_dimension = 0;  }  /// Destructor  virtual ~UFC_DragFunctional_dof_map_1()  {    // Do nothing  }  /// Return a string identifying the dof map  virtual const char* signature() const  {    return "FFC dof map for Mixed finite element: [Discontinuous Lagrange finite element of degree 0 on a triangle, Discontinuous Lagrange finite element of degree 0 on a triangle]";  }  /// Return true iff mesh entities of topological dimension d are needed  virtual bool needs_mesh_entities(unsigned int d) const  {    switch ( d )    {    case 0:      return false;      break;    case 1:      return false;      break;    case 2:      return true;      break;    }    return false;  }  /// Initialize dof map for mesh (return true iff init_cell() is needed)  virtual bool init_mesh(const ufc::mesh& m)  {    __global_dimension = 2*m.num_entities[2];    return false;  }  /// Initialize dof map for given cell  virtual void init_cell(const ufc::mesh& m,                         const ufc::cell& c)  {    // Do nothing  }  /// Finish initialization of dof map for cells  virtual void init_cell_finalize()  {    // Do nothing  }  /// Return the dimension of the global finite element function space  virtual unsigned int global_dimension() const  {    return __global_dimension;  }  /// Return the dimension of the local finite element function space  virtual unsigned int local_dimension() const  {    return 2;  }  /// Return the number of dofs on each cell facet  virtual unsigned int num_facet_dofs() const  {    return 0;  }  /// Tabulate the local-to-global mapping of dofs on a cell  virtual void tabulate_dofs(unsigned int* dofs,                             const ufc::mesh& m,                             const ufc::cell& c) const  {    dofs[0] = c.entity_indices[2][0];    unsigned int offset = m.num_entities[2];    dofs[1] = offset + c.entity_indices[2][0];  }  /// Tabulate the local-to-local mapping from facet dofs to cell dofs  virtual void tabulate_facet_dofs(unsigned int* dofs,                                   unsigned int facet) const  {    switch ( facet )    {    case 0:            break;    case 1:            break;    case 2:            break;    }  }  /// Tabulate the coordinates of all dofs on a cell  virtual void tabulate_coordinates(double** coordinates,                                    const ufc::cell& c) const  {    const double * const * x = c.coordinates;    coordinates[0][0] = 0.333333333333333*x[0][0] + 0.333333333333333*x[1][0] + 0.333333333333333*x[2][0];    coordinates[0][1] = 0.333333333333333*x[0][1] + 0.333333333333333*x[1][1] + 0.333333333333333*x[2][1];    coordinates[1][0] = 0.333333333333333*x[0][0] + 0.333333333333333*x[1][0] + 0.333333333333333*x[2][0];    coordinates[1][1] = 0.333333333333333*x[0][1] + 0.333333333333333*x[1][1] + 0.333333333333333*x[2][1];  }  /// Return the number of sub dof maps (for a mixed element)  virtual unsigned int num_sub_dof_maps() const  {    return 2;  }  /// Create a new dof_map for sub dof map i (for a mixed element)  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const  {    switch ( i )    {    case 0:      return new UFC_DragFunctional_dof_map_1_0();      break;    case 1:      return new UFC_DragFunctional_dof_map_1_1();      break;    }    return 0;  }};/// This class defines the interface for the tabulation of the/// exterior facet tensor corresponding to the local contribution to/// a form from the integral over an exterior facet.class UFC_DragFunctional_exterior_facet_integral_0: public ufc::exterior_facet_integral{public:  /// Constructor  UFC_DragFunctional_exterior_facet_integral_0() : ufc::exterior_facet_integral()  {    // Do nothing  }  /// Destructor  virtual ~UFC_DragFunctional_exterior_facet_integral_0()  {    // Do nothing  }  /// Tabulate the tensor for the contribution from a local exterior facet  virtual void tabulate_tensor(double* A,                               const double * const * w,                               const ufc::cell& c,                               unsigned int facet) const  {    // Extract vertex coordinates    const double * const * x = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = x[1][0] - x[0][0];    const double J_01 = x[2][0] - x[0][0];    const double J_10 = x[1][1] - x[0][1];    const double J_11 = x[2][1] - x[0][1];          // Compute determinant of Jacobian    double detJ = J_00*J_11 - J_01*J_10;          // Compute inverse of Jacobian        // Take absolute value of determinant    detJ = std::abs(detJ);        // Vertices on edges    static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}};        // Get vertices    const unsigned int v0 = edge_vertices[facet][0];    const unsigned int v1 = edge_vertices[facet][1];        // Compute scale factor (length of edge scaled by length of reference interval)    const double dx0 = x[v1][0] - x[v0][0];    const double dx1 = x[v1][1] - x[v0][1];    const double det = std::sqrt(dx0*dx0 + dx1*dx1);        // Compute coefficients    const double c0_0_0_0 = w[0][0];    const double c0_0_0_1 = w[0][1];    const double c0_0_0_2 = w[0][2];    const double c1_0_1_0 = w[1][0];        // Compute geometry tensors    const double G0_0_0 = det*c0_0_0_0*c1_0_1_0;    const double G0_1_0 = det*c0_0_0_1*c1_0_1_0;    const double G0_2_0 = det*c0_0_0_2*c1_0_1_0;        // Compute element tensor for all facets    switch ( facet )    {    case 0:      A[0] = -0.5*G0_1_0 - 0.5*G0_2_0;      break;    case 1:      A[0] = -0.5*G0_0_0 - 0.5*G0_2_0;      break;    case 2:      A[0] = -0.5*G0_0_0 - 0.5*G0_1_0;      break;    }  }};/// This class defines the interface for the assembly of the global/// tensor corresponding to a form with r + n arguments, that is, a/// mapping//////     a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R////// with arguments v1, v2,

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -