📄 drag.h
字号:
/// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 1; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 0; } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = c.entity_indices[2][0]; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: break; case 1: break; case 2: break; } } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { const double * const * x = c.coordinates; coordinates[0][0] = 0.333333333333333*x[0][0] + 0.333333333333333*x[1][0] + 0.333333333333333*x[2][0]; coordinates[0][1] = 0.333333333333333*x[0][1] + 0.333333333333333*x[1][1] + 0.333333333333333*x[2][1]; } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 1; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new UFC_DragFunctional_dof_map_1_0(); }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class UFC_DragFunctional_dof_map_1_1: public ufc::dof_map{private: unsigned int __global_dimension;public: /// Constructor UFC_DragFunctional_dof_map_1_1() : ufc::dof_map() { __global_dimension = 0; } /// Destructor virtual ~UFC_DragFunctional_dof_map_1_1() { // Do nothing } /// Return a string identifying the dof map virtual const char* signature() const { return "FFC dof map for Discontinuous Lagrange finite element of degree 0 on a triangle"; } /// Return true iff mesh entities of topological dimension d are needed virtual bool needs_mesh_entities(unsigned int d) const { switch ( d ) { case 0: return false; break; case 1: return false; break; case 2: return true; break; } return false; } /// Initialize dof map for mesh (return true iff init_cell() is needed) virtual bool init_mesh(const ufc::mesh& m) { __global_dimension = m.num_entities[2]; return false; } /// Initialize dof map for given cell virtual void init_cell(const ufc::mesh& m, const ufc::cell& c) { // Do nothing } /// Finish initialization of dof map for cells virtual void init_cell_finalize() { // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 1; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 0; } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = c.entity_indices[2][0]; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: break; case 1: break; case 2: break; } } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { const double * const * x = c.coordinates; coordinates[0][0] = 0.333333333333333*x[0][0] + 0.333333333333333*x[1][0] + 0.333333333333333*x[2][0]; coordinates[0][1] = 0.333333333333333*x[0][1] + 0.333333333333333*x[1][1] + 0.333333333333333*x[2][1]; } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 1; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new UFC_DragFunctional_dof_map_1_1(); }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class UFC_DragFunctional_dof_map_1: public ufc::dof_map{private: unsigned int __global_dimension;public: /// Constructor UFC_DragFunctional_dof_map_1() : ufc::dof_map() { __global_dimension = 0; } /// Destructor virtual ~UFC_DragFunctional_dof_map_1() { // Do nothing } /// Return a string identifying the dof map virtual const char* signature() const { return "FFC dof map for Mixed finite element: [Discontinuous Lagrange finite element of degree 0 on a triangle, Discontinuous Lagrange finite element of degree 0 on a triangle]"; } /// Return true iff mesh entities of topological dimension d are needed virtual bool needs_mesh_entities(unsigned int d) const { switch ( d ) { case 0: return false; break; case 1: return false; break; case 2: return true; break; } return false; } /// Initialize dof map for mesh (return true iff init_cell() is needed) virtual bool init_mesh(const ufc::mesh& m) { __global_dimension = 2*m.num_entities[2]; return false; } /// Initialize dof map for given cell virtual void init_cell(const ufc::mesh& m, const ufc::cell& c) { // Do nothing } /// Finish initialization of dof map for cells virtual void init_cell_finalize() { // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 2; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 0; } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = c.entity_indices[2][0]; unsigned int offset = m.num_entities[2]; dofs[1] = offset + c.entity_indices[2][0]; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: break; case 1: break; case 2: break; } } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { const double * const * x = c.coordinates; coordinates[0][0] = 0.333333333333333*x[0][0] + 0.333333333333333*x[1][0] + 0.333333333333333*x[2][0]; coordinates[0][1] = 0.333333333333333*x[0][1] + 0.333333333333333*x[1][1] + 0.333333333333333*x[2][1]; coordinates[1][0] = 0.333333333333333*x[0][0] + 0.333333333333333*x[1][0] + 0.333333333333333*x[2][0]; coordinates[1][1] = 0.333333333333333*x[0][1] + 0.333333333333333*x[1][1] + 0.333333333333333*x[2][1]; } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 2; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { switch ( i ) { case 0: return new UFC_DragFunctional_dof_map_1_0(); break; case 1: return new UFC_DragFunctional_dof_map_1_1(); break; } return 0; }};/// This class defines the interface for the tabulation of the/// exterior facet tensor corresponding to the local contribution to/// a form from the integral over an exterior facet.class UFC_DragFunctional_exterior_facet_integral_0: public ufc::exterior_facet_integral{public: /// Constructor UFC_DragFunctional_exterior_facet_integral_0() : ufc::exterior_facet_integral() { // Do nothing } /// Destructor virtual ~UFC_DragFunctional_exterior_facet_integral_0() { // Do nothing } /// Tabulate the tensor for the contribution from a local exterior facet virtual void tabulate_tensor(double* A, const double * const * w, const ufc::cell& c, unsigned int facet) const { // Extract vertex coordinates const double * const * x = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = x[1][0] - x[0][0]; const double J_01 = x[2][0] - x[0][0]; const double J_10 = x[1][1] - x[0][1]; const double J_11 = x[2][1] - x[0][1]; // Compute determinant of Jacobian double detJ = J_00*J_11 - J_01*J_10; // Compute inverse of Jacobian // Take absolute value of determinant detJ = std::abs(detJ); // Vertices on edges static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}}; // Get vertices const unsigned int v0 = edge_vertices[facet][0]; const unsigned int v1 = edge_vertices[facet][1]; // Compute scale factor (length of edge scaled by length of reference interval) const double dx0 = x[v1][0] - x[v0][0]; const double dx1 = x[v1][1] - x[v0][1]; const double det = std::sqrt(dx0*dx0 + dx1*dx1); // Compute coefficients const double c0_0_0_0 = w[0][0]; const double c0_0_0_1 = w[0][1]; const double c0_0_0_2 = w[0][2]; const double c1_0_1_0 = w[1][0]; // Compute geometry tensors const double G0_0_0 = det*c0_0_0_0*c1_0_1_0; const double G0_1_0 = det*c0_0_0_1*c1_0_1_0; const double G0_2_0 = det*c0_0_0_2*c1_0_1_0; // Compute element tensor for all facets switch ( facet ) { case 0: A[0] = -0.5*G0_1_0 - 0.5*G0_2_0; break; case 1: A[0] = -0.5*G0_0_0 - 0.5*G0_2_0; break; case 2: A[0] = -0.5*G0_0_0 - 0.5*G0_1_0; break; } }};/// This class defines the interface for the assembly of the global/// tensor corresponding to a form with r + n arguments, that is, a/// mapping////// a : V1 x V2 x ... Vr x W1 x W2 x ... x Wn -> R////// with arguments v1, v2,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -