⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 drag.h

📁 Dolfin provide a high-performance linear algebra library
💻 H
📖 第 1 页 / 共 5 页
字号:
      // Generate scalings      const double scalings_y_0 = 1;          // Compute psitilde_a      const double psitilde_a_0 = 1;          // Compute psitilde_bs      const double psitilde_bs_0_0 = 1;          // Compute basisvalues      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;          // Table(s) of coefficients      const static double coefficients0[1][1] =   \      {{1.41421356237309}};          // Interesting (new) part      // Tables of derivatives of the polynomial base (transpose)      const static double dmats0[1][1] =   \      {{0}};          const static double dmats1[1][1] =   \      {{0}};          // Compute reference derivatives      // Declare pointer to array of derivatives on FIAT element      double *derivatives = new double [num_derivatives];          // Declare coefficients      double coeff0_0 = 0;          // Declare new coefficients      double new_coeff0_0 = 0;          // Loop possible derivatives      for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)      {        // Get values from coefficients array        new_coeff0_0 = coefficients0[dof][0];            // Loop derivative order        for (unsigned int j = 0; j < n; j++)        {          // Update old coefficients          coeff0_0 = new_coeff0_0;              if(combinations[deriv_num][j] == 0)          {            new_coeff0_0 = coeff0_0*dmats0[0][0];          }          if(combinations[deriv_num][j] == 1)          {            new_coeff0_0 = coeff0_0*dmats1[0][0];          }            }        // Compute derivatives on reference element as dot product of coefficients and basisvalues        derivatives[deriv_num] = new_coeff0_0*basisvalue0;      }          // Transform derivatives back to physical element      for (unsigned int row = 0; row < num_derivatives; row++)      {        for (unsigned int col = 0; col < num_derivatives; col++)        {          values[row] += transform[row][col]*derivatives[col];        }      }      // Delete pointer to array of derivatives on FIAT element      delete [] derivatives;          // Delete pointer to array of combinations of derivatives      delete [] combinations;        }        if (1 <= i and i <= 1)    {      // Map degree of freedom to element degree of freedom      const unsigned int dof = i - 1;          // Generate scalings      const double scalings_y_0 = 1;          // Compute psitilde_a      const double psitilde_a_0 = 1;          // Compute psitilde_bs      const double psitilde_bs_0_0 = 1;          // Compute basisvalues      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;          // Table(s) of coefficients      const static double coefficients0[1][1] =   \      {{1.41421356237309}};          // Interesting (new) part      // Tables of derivatives of the polynomial base (transpose)      const static double dmats0[1][1] =   \      {{0}};          const static double dmats1[1][1] =   \      {{0}};          // Compute reference derivatives      // Declare pointer to array of derivatives on FIAT element      double *derivatives = new double [num_derivatives];          // Declare coefficients      double coeff0_0 = 0;          // Declare new coefficients      double new_coeff0_0 = 0;          // Loop possible derivatives      for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)      {        // Get values from coefficients array        new_coeff0_0 = coefficients0[dof][0];            // Loop derivative order        for (unsigned int j = 0; j < n; j++)        {          // Update old coefficients          coeff0_0 = new_coeff0_0;              if(combinations[deriv_num][j] == 0)          {            new_coeff0_0 = coeff0_0*dmats0[0][0];          }          if(combinations[deriv_num][j] == 1)          {            new_coeff0_0 = coeff0_0*dmats1[0][0];          }            }        // Compute derivatives on reference element as dot product of coefficients and basisvalues        derivatives[deriv_num] = new_coeff0_0*basisvalue0;      }          // Transform derivatives back to physical element      for (unsigned int row = 0; row < num_derivatives; row++)      {        for (unsigned int col = 0; col < num_derivatives; col++)        {          values[num_derivatives + row] += transform[row][col]*derivatives[col];        }      }      // Delete pointer to array of derivatives on FIAT element      delete [] derivatives;          // Delete pointer to array of combinations of derivatives      delete [] combinations;        }      }  /// Evaluate linear functional for dof i on the function f  virtual double evaluate_dof(unsigned int i,                              const ufc::function& f,                              const ufc::cell& c) const  {    double values[2];    double coordinates[2];        // Nodal coordinates on reference cell    static double X[2][2] = {{0.333333333333333, 0.333333333333333}, {0.333333333333333, 0.333333333333333}};        // Components for each dof    static unsigned int components[2] = {0, 1};        // Extract vertex coordinates    const double * const * x = c.coordinates;        // Evaluate basis functions for affine mapping    const double w0 = 1.0 - X[i][0] - X[i][1];    const double w1 = X[i][0];    const double w2 = X[i][1];        // Compute affine mapping x = F(X)    coordinates[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];    coordinates[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];        // Evaluate function at coordinates    f.evaluate(values, coordinates, c);        // Pick component for evaluation    return values[components[i]];  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Evaluate at vertices and use affine mapping    vertex_values[0] = dof_values[0];    vertex_values[1] = dof_values[0];    vertex_values[2] = dof_values[0];    // Evaluate at vertices and use affine mapping    vertex_values[3] = dof_values[1];    vertex_values[4] = dof_values[1];    vertex_values[5] = dof_values[1];  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const  {    return 2;  }  /// Create a new finite element for sub element i (for a mixed element)  virtual ufc::finite_element* create_sub_element(unsigned int i) const  {    switch ( i )    {    case 0:      return new UFC_DragFunctional_finite_element_1_0();      break;    case 1:      return new UFC_DragFunctional_finite_element_1_1();      break;    }    return 0;  }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class UFC_DragFunctional_dof_map_0: public ufc::dof_map{private:  unsigned int __global_dimension;public:  /// Constructor  UFC_DragFunctional_dof_map_0() : ufc::dof_map()  {    __global_dimension = 0;  }  /// Destructor  virtual ~UFC_DragFunctional_dof_map_0()  {    // Do nothing  }  /// Return a string identifying the dof map  virtual const char* signature() const  {    return "FFC dof map for Lagrange finite element of degree 1 on a triangle";  }  /// Return true iff mesh entities of topological dimension d are needed  virtual bool needs_mesh_entities(unsigned int d) const  {    switch ( d )    {    case 0:      return true;      break;    case 1:      return false;      break;    case 2:      return false;      break;    }    return false;  }  /// Initialize dof map for mesh (return true iff init_cell() is needed)  virtual bool init_mesh(const ufc::mesh& m)  {    __global_dimension = m.num_entities[0];    return false;  }  /// Initialize dof map for given cell  virtual void init_cell(const ufc::mesh& m,                         const ufc::cell& c)  {    // Do nothing  }  /// Finish initialization of dof map for cells  virtual void init_cell_finalize()  {    // Do nothing  }  /// Return the dimension of the global finite element function space  virtual unsigned int global_dimension() const  {    return __global_dimension;  }  /// Return the dimension of the local finite element function space  virtual unsigned int local_dimension() const  {    return 3;  }  /// Return the number of dofs on each cell facet  virtual unsigned int num_facet_dofs() const  {    return 2;  }  /// Tabulate the local-to-global mapping of dofs on a cell  virtual void tabulate_dofs(unsigned int* dofs,                             const ufc::mesh& m,                             const ufc::cell& c) const  {    dofs[0] = c.entity_indices[0][0];    dofs[1] = c.entity_indices[0][1];    dofs[2] = c.entity_indices[0][2];  }  /// Tabulate the local-to-local mapping from facet dofs to cell dofs  virtual void tabulate_facet_dofs(unsigned int* dofs,                                   unsigned int facet) const  {    switch ( facet )    {    case 0:      dofs[0] = 1;      dofs[1] = 2;      break;    case 1:      dofs[0] = 0;      dofs[1] = 2;      break;    case 2:      dofs[0] = 0;      dofs[1] = 1;      break;    }  }  /// Tabulate the coordinates of all dofs on a cell  virtual void tabulate_coordinates(double** coordinates,                                    const ufc::cell& c) const  {    const double * const * x = c.coordinates;    coordinates[0][0] = x[0][0];    coordinates[0][1] = x[0][1];    coordinates[1][0] = x[1][0];    coordinates[1][1] = x[1][1];    coordinates[2][0] = x[2][0];    coordinates[2][1] = x[2][1];  }  /// Return the number of sub dof maps (for a mixed element)  virtual unsigned int num_sub_dof_maps() const  {    return 1;  }  /// Create a new dof_map for sub dof map i (for a mixed element)  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const  {    return new UFC_DragFunctional_dof_map_0();  }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class UFC_DragFunctional_dof_map_1_0: public ufc::dof_map{private:  unsigned int __global_dimension;public:  /// Constructor  UFC_DragFunctional_dof_map_1_0() : ufc::dof_map()  {    __global_dimension = 0;  }  /// Destructor  virtual ~UFC_DragFunctional_dof_map_1_0()  {    // Do nothing  }  /// Return a string identifying the dof map  virtual const char* signature() const  {    return "FFC dof map for Discontinuous Lagrange finite element of degree 0 on a triangle";  }  /// Return true iff mesh entities of topological dimension d are needed  virtual bool needs_mesh_entities(unsigned int d) const  {    switch ( d )    {    case 0:      return false;      break;    case 1:      return false;      break;    case 2:      return true;      break;    }    return false;  }  /// Initialize dof map for mesh (return true iff init_cell() is needed)  virtual bool init_mesh(const ufc::mesh& m)  {    __global_dimension = m.num_entities[2];    return false;  }  /// Initialize dof map for given cell  virtual void init_cell(const ufc::mesh& m,                         const ufc::cell& c)  {    // Do nothing  }  /// Finish initialization of dof map for cells  virtual void init_cell_finalize()  {    // Do nothing  }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -