⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mixedpoisson.h

📁 Dolfin provide a high-performance linear algebra library
💻 H
📖 第 1 页 / 共 5 页
字号:
      derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;      derivatives[num_derivatives + deriv_num] = new_coeff1_0*basisvalue0 + new_coeff1_1*basisvalue1 + new_coeff1_2*basisvalue2;    }        // Transform derivatives back to physical element    for (unsigned int row = 0; row < num_derivatives; row++)    {      for (unsigned int col = 0; col < num_derivatives; col++)      {        values[row] += transform[row][col]*derivatives[col];        values[num_derivatives + row] += transform[row][col]*derivatives[num_derivatives + col];      }    }    // Delete pointer to array of derivatives on FIAT element    delete [] derivatives;        // Delete pointer to array of combinations of derivatives    delete [] combinations;      }  /// Evaluate linear functional for dof i on the function f  virtual double evaluate_dof(unsigned int i,                              const ufc::function& f,                              const ufc::cell& c) const  {    throw std::runtime_error("evaluate_dof not implemented for this type of element");  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * x = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = x[1][0] - x[0][0];    const double J_01 = x[2][0] - x[0][0];    const double J_10 = x[1][1] - x[0][1];    const double J_11 = x[2][1] - x[0][1];          // Compute determinant of Jacobian    double detJ = J_00*J_11 - J_01*J_10;          // Compute inverse of Jacobian        // Take absolute value of determinant    detJ = std::abs(detJ);        // Compute signs of edges (need to flip edge degrees of freedom)        // Compute the edges    const double e0_0 = x[2][0] - x[1][0];    const double e0_1 = x[2][1] - x[1][1];    const double e1_0 = x[2][0] - x[0][0];    const double e1_1 = x[2][1] - x[0][1];    const double e2_0 = x[1][0] - x[0][0];    const double e2_1 = x[1][1] - x[0][1];        // Compute edges normals by rotating edges 90 degrees clockwise    const double n0_0 = e0_1;    const double n0_1 = -e0_0;    const double n1_0 = e1_1;    const double n1_1 = -e1_0;    const double n2_0 = e2_1;    const double n2_1 = -e2_0;        // Compute the orientation of the normals relative to the cell    int sign_facet0 = n0_0*e2_0 + n0_1*e2_1 > 0 ? 1 : -1;    int sign_facet1 = n1_0*e0_0 + n1_1*e0_1 > 0 ? 1 : -1;    int sign_facet2 = n2_0*e1_0 + n2_1*e1_1 < 0 ? 1 : -1;        // Evaluate at vertices and use Piola mapping    vertex_values[0] = (1.0/detJ)*(sign_facet1*dof_values[2]*2*J_00 + sign_facet1*dof_values[3]*J_00 + sign_facet2*dof_values[4]*(-2*J_01) + sign_facet2*dof_values[5]*J_01);    vertex_values[1] = (1.0/detJ)*(sign_facet0*dof_values[0]*2*J_00 + sign_facet0*dof_values[1]*J_00 + sign_facet2*dof_values[4]*(J_00 + J_01) + sign_facet2*dof_values[5]*(2*J_00 - 2*J_01));    vertex_values[2] = (1.0/detJ)*(sign_facet0*dof_values[0]*J_01 + sign_facet0*dof_values[1]*2*J_01 + sign_facet1*dof_values[2]*(J_00 + J_01) + sign_facet1*dof_values[3]*(2*J_00 - 2*J_01));    vertex_values[3] = (1.0/detJ)*(sign_facet1*dof_values[2]*2*J_10 + sign_facet1*dof_values[3]*J_10 + sign_facet2*dof_values[4]*(-2*J_11) + sign_facet2*dof_values[5]*J_11);    vertex_values[4] = (1.0/detJ)*(sign_facet0*dof_values[0]*2*J_10 + sign_facet0*dof_values[1]*J_10 + sign_facet2*dof_values[4]*(J_10 + J_11) + sign_facet2*dof_values[5]*(2*J_10 - 2*J_11));    vertex_values[5] = (1.0/detJ)*(sign_facet0*dof_values[0]*J_11 + sign_facet0*dof_values[1]*2*J_11 + sign_facet1*dof_values[2]*(J_10 + J_11) + sign_facet1*dof_values[3]*(2*J_10 - 2*J_11));  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const  {    return 1;  }  /// Create a new finite element for sub element i (for a mixed element)  virtual ufc::finite_element* create_sub_element(unsigned int i) const  {    return new UFC_MixedPoissonBilinearForm_finite_element_0_0();  }};/// This class defines the interface for a finite element.class UFC_MixedPoissonBilinearForm_finite_element_0_1: public ufc::finite_element{public:  /// Constructor  UFC_MixedPoissonBilinearForm_finite_element_0_1() : ufc::finite_element()  {    // Do nothing  }  /// Destructor  virtual ~UFC_MixedPoissonBilinearForm_finite_element_0_1()  {    // Do nothing  }  /// Return a string identifying the finite element  virtual const char* signature() const  {    return "Discontinuous Lagrange finite element of degree 0 on a triangle";  }  /// Return the cell shape  virtual ufc::shape cell_shape() const  {    return ufc::triangle;  }  /// Return the dimension of the finite element function space  virtual unsigned int space_dimension() const  {    return 1;  }  /// Return the rank of the value space  virtual unsigned int value_rank() const  {    return 0;  }  /// Return the dimension of the value space for axis i  virtual unsigned int value_dimension(unsigned int i) const  {    return 1;  }  /// Evaluate basis function i at given point in cell  virtual void evaluate_basis(unsigned int i,                              double* values,                              const double* coordinates,                              const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * element_coordinates = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];          // Compute determinant of Jacobian    const double detJ = J_00*J_11 - J_01*J_10;        // Compute constants    const double C0 = element_coordinates[1][0] + element_coordinates[2][0];    const double C1 = element_coordinates[1][1] + element_coordinates[2][1];        // Get coordinates and map to the reference (FIAT) element    double x = (J_01*C1 - J_11*C0 + 2.0*J_11*coordinates[0] - 2.0*J_01*coordinates[1]) / detJ;    double y = (J_10*C0 - J_00*C1 - 2.0*J_10*coordinates[0] + 2.0*J_00*coordinates[1]) / detJ;        // Map coordinates to the reference square    if (std::abs(y - 1.0) < 1e-14)      x = -1.0;    else      x = 2.0 * (1.0 + x)/(1.0 - y) - 1.0;        // Reset values    *values = 0;        // Map degree of freedom to element degree of freedom    const unsigned int dof = i;        // Generate scalings    const double scalings_y_0 = 1;        // Compute psitilde_a    const double psitilde_a_0 = 1;        // Compute psitilde_bs    const double psitilde_bs_0_0 = 1;        // Compute basisvalues    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;        // Table(s) of coefficients    const static double coefficients0[1][1] = \    {{1.41421356237309}};        // Extract relevant coefficients    const double coeff0_0 = coefficients0[dof][0];        // Compute value(s)    *values = coeff0_0*basisvalue0;  }  /// Evaluate order n derivatives of basis function i at given point in cell  virtual void evaluate_basis_derivatives(unsigned int i,                                          unsigned int n,                                          double* values,                                          const double* coordinates,                                          const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * element_coordinates = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];          // Compute determinant of Jacobian    const double detJ = J_00*J_11 - J_01*J_10;        // Compute constants    const double C0 = element_coordinates[1][0] + element_coordinates[2][0];    const double C1 = element_coordinates[1][1] + element_coordinates[2][1];        // Get coordinates and map to the reference (FIAT) element    double x = (J_01*C1 - J_11*C0 + 2.0*J_11*coordinates[0] - 2.0*J_01*coordinates[1]) / detJ;    double y = (J_10*C0 - J_00*C1 - 2.0*J_10*coordinates[0] + 2.0*J_00*coordinates[1]) / detJ;        // Map coordinates to the reference square    if (std::abs(y - 1.0) < 1e-14)      x = -1.0;    else      x = 2.0 * (1.0 + x)/(1.0 - y) - 1.0;        // Compute number of derivatives    unsigned int num_derivatives = 1;        for (unsigned int j = 0; j < n; j++)      num_derivatives *= 2;            // Declare pointer to two dimensional array that holds combinations of derivatives and initialise    unsigned int **combinations = new unsigned int *[num_derivatives];            for (unsigned int j = 0; j < num_derivatives; j++)    {      combinations[j] = new unsigned int [n];      for (unsigned int k = 0; k < n; k++)        combinations[j][k] = 0;    }            // Generate combinations of derivatives    for (unsigned int row = 1; row < num_derivatives; row++)    {      for (unsigned int num = 0; num < row; num++)      {        for (unsigned int col = n-1; col+1 > 0; col--)        {          if (combinations[row][col] + 1 > 1)            combinations[row][col] = 0;          else          {            combinations[row][col] += 1;            break;          }        }      }    }        // Compute inverse of Jacobian, components are scaled because of difference in FFC/FIAT reference elements    const double Jinv[2][2] =  {{2*J_11 / detJ, -2*J_01 / detJ}, {-2*J_10 / detJ, 2*J_00 / detJ}};        // Declare transformation matrix    // Declare pointer to two dimensional array and initialise    double **transform = new double *[num_derivatives];            for (unsigned int j = 0; j < num_derivatives; j++)    {      transform[j] = new double [num_derivatives];      for (unsigned int k = 0; k < num_derivatives; k++)        transform[j][k] = 1;    }        // Construct transformation matrix    for (unsigned int row = 0; row < num_derivatives; row++)    {      for (unsigned int col = 0; col < num_derivatives; col++)      {        for (unsigned int k = 0; k < n; k++)          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];      }    }        // Reset values    for (unsigned int j = 0; j < 1*num_derivatives; j++)      values[j] = 0;        // Map degree of freedom to element degree of freedom    const unsigned int dof = i;        // Generate scalings    const double scalings_y_0 = 1;        // Compute psitilde_a    const double psitilde_a_0 = 1;        // Compute psitilde_bs    const double psitilde_bs_0_0 = 1;        // Compute basisvalues    const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;        // Table(s) of coefficients    const static double coefficients0[1][1] = \    {{1.41421356237309}};        // Interesting (new) part    // Tables of derivatives of the polynomial base (transpose)    const static double dmats0[1][1] = \    {{0}};        const static double dmats1[1][1] = \    {{0}};        // Compute reference derivatives    // Declare pointer to array of derivatives on FIAT element    double *derivatives = new double [num_derivatives];        // Declare coefficients    double coeff0_0 = 0;        // Declare new coefficients    double new_coeff0_0 = 0;        // Loop possible derivatives    for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)    {      // Get values from coefficients array      new_coeff0_0 = coefficients0[dof][0];          // Loop derivative order      for (unsigned int j = 0; j < n; j++)      {        // Update old coefficients        coeff0_0 = new_coeff0_0;            if(combinations[deriv_num][j] == 0)        {          new_coeff0_0 = coeff0_0*dmats0[0][0];        }        if(combinations[deriv_num][j] == 1)        {          new_coeff0_0 = coeff0_0*dmats1[0][0];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -