⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cahnhilliard3d.h

📁 Dolfin provide a high-performance linear algebra library
💻 H
📖 第 1 页 / 共 5 页
字号:
      // Compute basisvalues      const double basisvalue0 = 0.866025403784439*psitilde_a_0*scalings_y_0*psitilde_bs_0_0*scalings_z_0*psitilde_cs_00_0;      const double basisvalue1 = 2.73861278752583*psitilde_a_1*scalings_y_1*psitilde_bs_1_0*scalings_z_1*psitilde_cs_10_0;      const double basisvalue2 = 1.58113883008419*psitilde_a_0*scalings_y_0*psitilde_bs_0_1*scalings_z_1*psitilde_cs_01_0;      const double basisvalue3 = 1.11803398874989*psitilde_a_0*scalings_y_0*psitilde_bs_0_0*scalings_z_0*psitilde_cs_00_1;          // Table(s) of coefficients      const static double coefficients0[4][4] =   \      {{0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993},      {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993},      {0.288675134594813, 0, 0.210818510677892, -0.074535599249993},      {0.288675134594813, 0, 0, 0.223606797749979}};          // Interesting (new) part      // Tables of derivatives of the polynomial base (transpose)      const static double dmats0[4][4] =   \      {{0, 0, 0, 0},      {3.16227766016838, 0, 0, 0},      {0, 0, 0, 0},      {0, 0, 0, 0}};          const static double dmats1[4][4] =   \      {{0, 0, 0, 0},      {1.58113883008419, 0, 0, 0},      {2.73861278752583, 0, 0, 0},      {0, 0, 0, 0}};          const static double dmats2[4][4] =   \      {{0, 0, 0, 0},      {1.58113883008419, 0, 0, 0},      {0.912870929175277, 0, 0, 0},      {2.58198889747161, 0, 0, 0}};          // Compute reference derivatives      // Declare pointer to array of derivatives on FIAT element      double *derivatives = new double [num_derivatives];          // Declare coefficients      double coeff0_0 = 0;      double coeff0_1 = 0;      double coeff0_2 = 0;      double coeff0_3 = 0;          // Declare new coefficients      double new_coeff0_0 = 0;      double new_coeff0_1 = 0;      double new_coeff0_2 = 0;      double new_coeff0_3 = 0;          // Loop possible derivatives      for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)      {        // Get values from coefficients array        new_coeff0_0 = coefficients0[dof][0];        new_coeff0_1 = coefficients0[dof][1];        new_coeff0_2 = coefficients0[dof][2];        new_coeff0_3 = coefficients0[dof][3];            // Loop derivative order        for (unsigned int j = 0; j < n; j++)        {          // Update old coefficients          coeff0_0 = new_coeff0_0;          coeff0_1 = new_coeff0_1;          coeff0_2 = new_coeff0_2;          coeff0_3 = new_coeff0_3;              if(combinations[deriv_num][j] == 0)          {            new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0] + coeff0_3*dmats0[3][0];            new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1] + coeff0_3*dmats0[3][1];            new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2] + coeff0_3*dmats0[3][2];            new_coeff0_3 = coeff0_0*dmats0[0][3] + coeff0_1*dmats0[1][3] + coeff0_2*dmats0[2][3] + coeff0_3*dmats0[3][3];          }          if(combinations[deriv_num][j] == 1)          {            new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0] + coeff0_3*dmats1[3][0];            new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1] + coeff0_3*dmats1[3][1];            new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2] + coeff0_3*dmats1[3][2];            new_coeff0_3 = coeff0_0*dmats1[0][3] + coeff0_1*dmats1[1][3] + coeff0_2*dmats1[2][3] + coeff0_3*dmats1[3][3];          }          if(combinations[deriv_num][j] == 2)          {            new_coeff0_0 = coeff0_0*dmats2[0][0] + coeff0_1*dmats2[1][0] + coeff0_2*dmats2[2][0] + coeff0_3*dmats2[3][0];            new_coeff0_1 = coeff0_0*dmats2[0][1] + coeff0_1*dmats2[1][1] + coeff0_2*dmats2[2][1] + coeff0_3*dmats2[3][1];            new_coeff0_2 = coeff0_0*dmats2[0][2] + coeff0_1*dmats2[1][2] + coeff0_2*dmats2[2][2] + coeff0_3*dmats2[3][2];            new_coeff0_3 = coeff0_0*dmats2[0][3] + coeff0_1*dmats2[1][3] + coeff0_2*dmats2[2][3] + coeff0_3*dmats2[3][3];          }            }        // Compute derivatives on reference element as dot product of coefficients and basisvalues        derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2 + new_coeff0_3*basisvalue3;      }          // Transform derivatives back to physical element      for (unsigned int row = 0; row < num_derivatives; row++)      {        for (unsigned int col = 0; col < num_derivatives; col++)        {          values[row] += transform[row][col]*derivatives[col];        }      }      // Delete pointer to array of derivatives on FIAT element      delete [] derivatives;          // Delete pointer to array of combinations of derivatives      delete [] combinations;        }        if (4 <= i and i <= 7)    {      // Map degree of freedom to element degree of freedom      const unsigned int dof = i - 4;          // Generate scalings      const double scalings_y_0 = 1;      const double scalings_y_1 = scalings_y_0*(0.5 - 0.5*y);      const double scalings_z_0 = 1;      const double scalings_z_1 = scalings_z_0*(0.5 - 0.5*z);          // Compute psitilde_a      const double psitilde_a_0 = 1;      const double psitilde_a_1 = x;          // Compute psitilde_bs      const double psitilde_bs_0_0 = 1;      const double psitilde_bs_0_1 = 1.5*y + 0.5;      const double psitilde_bs_1_0 = 1;          // Compute psitilde_cs      const double psitilde_cs_00_0 = 1;      const double psitilde_cs_00_1 = 2*z + 1;      const double psitilde_cs_01_0 = 1;      const double psitilde_cs_10_0 = 1;          // Compute basisvalues      const double basisvalue0 = 0.866025403784439*psitilde_a_0*scalings_y_0*psitilde_bs_0_0*scalings_z_0*psitilde_cs_00_0;      const double basisvalue1 = 2.73861278752583*psitilde_a_1*scalings_y_1*psitilde_bs_1_0*scalings_z_1*psitilde_cs_10_0;      const double basisvalue2 = 1.58113883008419*psitilde_a_0*scalings_y_0*psitilde_bs_0_1*scalings_z_1*psitilde_cs_01_0;      const double basisvalue3 = 1.11803398874989*psitilde_a_0*scalings_y_0*psitilde_bs_0_0*scalings_z_0*psitilde_cs_00_1;          // Table(s) of coefficients      const static double coefficients0[4][4] =   \      {{0.288675134594813, -0.182574185835055, -0.105409255338946, -0.074535599249993},      {0.288675134594813, 0.182574185835055, -0.105409255338946, -0.074535599249993},      {0.288675134594813, 0, 0.210818510677892, -0.074535599249993},      {0.288675134594813, 0, 0, 0.223606797749979}};          // Interesting (new) part      // Tables of derivatives of the polynomial base (transpose)      const static double dmats0[4][4] =   \      {{0, 0, 0, 0},      {3.16227766016838, 0, 0, 0},      {0, 0, 0, 0},      {0, 0, 0, 0}};          const static double dmats1[4][4] =   \      {{0, 0, 0, 0},      {1.58113883008419, 0, 0, 0},      {2.73861278752583, 0, 0, 0},      {0, 0, 0, 0}};          const static double dmats2[4][4] =   \      {{0, 0, 0, 0},      {1.58113883008419, 0, 0, 0},      {0.912870929175277, 0, 0, 0},      {2.58198889747161, 0, 0, 0}};          // Compute reference derivatives      // Declare pointer to array of derivatives on FIAT element      double *derivatives = new double [num_derivatives];          // Declare coefficients      double coeff0_0 = 0;      double coeff0_1 = 0;      double coeff0_2 = 0;      double coeff0_3 = 0;          // Declare new coefficients      double new_coeff0_0 = 0;      double new_coeff0_1 = 0;      double new_coeff0_2 = 0;      double new_coeff0_3 = 0;          // Loop possible derivatives      for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)      {        // Get values from coefficients array        new_coeff0_0 = coefficients0[dof][0];        new_coeff0_1 = coefficients0[dof][1];        new_coeff0_2 = coefficients0[dof][2];        new_coeff0_3 = coefficients0[dof][3];            // Loop derivative order        for (unsigned int j = 0; j < n; j++)        {          // Update old coefficients          coeff0_0 = new_coeff0_0;          coeff0_1 = new_coeff0_1;          coeff0_2 = new_coeff0_2;          coeff0_3 = new_coeff0_3;              if(combinations[deriv_num][j] == 0)          {            new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0] + coeff0_3*dmats0[3][0];            new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1] + coeff0_3*dmats0[3][1];            new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2] + coeff0_3*dmats0[3][2];            new_coeff0_3 = coeff0_0*dmats0[0][3] + coeff0_1*dmats0[1][3] + coeff0_2*dmats0[2][3] + coeff0_3*dmats0[3][3];          }          if(combinations[deriv_num][j] == 1)          {            new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0] + coeff0_3*dmats1[3][0];            new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1] + coeff0_3*dmats1[3][1];            new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2] + coeff0_3*dmats1[3][2];            new_coeff0_3 = coeff0_0*dmats1[0][3] + coeff0_1*dmats1[1][3] + coeff0_2*dmats1[2][3] + coeff0_3*dmats1[3][3];          }          if(combinations[deriv_num][j] == 2)          {            new_coeff0_0 = coeff0_0*dmats2[0][0] + coeff0_1*dmats2[1][0] + coeff0_2*dmats2[2][0] + coeff0_3*dmats2[3][0];            new_coeff0_1 = coeff0_0*dmats2[0][1] + coeff0_1*dmats2[1][1] + coeff0_2*dmats2[2][1] + coeff0_3*dmats2[3][1];            new_coeff0_2 = coeff0_0*dmats2[0][2] + coeff0_1*dmats2[1][2] + coeff0_2*dmats2[2][2] + coeff0_3*dmats2[3][2];            new_coeff0_3 = coeff0_0*dmats2[0][3] + coeff0_1*dmats2[1][3] + coeff0_2*dmats2[2][3] + coeff0_3*dmats2[3][3];          }            }        // Compute derivatives on reference element as dot product of coefficients and basisvalues        derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2 + new_coeff0_3*basisvalue3;      }          // Transform derivatives back to physical element      for (unsigned int row = 0; row < num_derivatives; row++)      {        for (unsigned int col = 0; col < num_derivatives; col++)        {          values[num_derivatives + row] += transform[row][col]*derivatives[col];        }      }      // Delete pointer to array of derivatives on FIAT element      delete [] derivatives;          // Delete pointer to array of combinations of derivatives      delete [] combinations;        }      }  /// Evaluate linear functional for dof i on the function f  virtual double evaluate_dof(unsigned int i,                              const ufc::function& f,                              const ufc::cell& c) const  {    double values[2];    double coordinates[3];        // Nodal coordinates on reference cell    static double X[8][3] = {{0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}};        // Components for each dof    static unsigned int components[8] = {0, 0, 0, 0, 1, 1, 1, 1};        // Extract vertex coordinates    const double * const * x = c.coordinates;        // Evaluate basis functions for affine mapping    const double w0 = 1.0 - X[i][0] - X[i][1] - X[i][2];    const double w1 = X[i][0];    const double w2 = X[i][1];    const double w3 = X[i][2];        // Compute affine mapping x = F(X)    coordinates[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0] + w3*x[3][0];    coordinates[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1] + w3*x[3][1];    coordinates[2] = w0*x[0][2] + w1*x[1][2] + w2*x[2][2] + w3*x[3][2];        // Evaluate function at coordinates    f.evaluate(values, coordinates, c);        // Pick component for evaluation    return values[components[i]];  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Evaluate at vertices and use affine mapping    vertex_values[0] = dof_values[0];    vertex_values[1] = dof_values[1];    vertex_values[2] = dof_values[2];    vertex_values[3] = dof_values[3];    // Evaluate at vertices and use affine mapping    vertex_values[4] = dof_values[4];    vertex_values[5] = dof_values[5];    vertex_values[6] = dof_values[6];    vertex_values[7] = dof_values[7];  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const  {    return 2;  }  /// Create a new finite element for sub element i (for a mixed element)  virtual ufc::finite_element* create_sub_element(unsigned int i) const  {    switch ( i )    {    case 0:      return new UFC_CahnHilliard3DBilinearForm_finite_element_0_0();      break;    case 1:      return new UFC_CahnHilliard3DBilinearForm_finite_element_0_1();      break;    }    return 0;  }};/// This class defines the interface for a finite element.class UFC_CahnHilliard3DBilinearForm_finite_element_1_0: public ufc::finite_element{public:  /// Constructor  UFC_CahnHilliard3DBilinearForm_finite_element_1_0() : ufc::finite_element()  {    // Do nothing  }  /// De

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -