⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 poisson2d_4.h

📁 Dolfin provide a high-performance linear algebra library
💻 H
📖 第 1 页 / 共 5 页
字号:
    {1.32287565553229, 2.59229627936314, -0.748331477354788, 3.41565025531987, -0.529150262212919, 0.152752523165193, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {1.11803398874989, 1.09544511501033, 1.26491106406735, 4.04145188432738, 3.13049516849971, -0.903696114115067, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {0.86602540378444, -2.54558441227157, 1.95959179422654, 0, 4.84974226119286, 2.1, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {2.5, 0, -1.4142135623731, 0, 0, 6.06217782649107, 0, 0, 0, 0, 0, 0, 0, 0, 0},    {1.34164078649987, 2.73861278752583, -0.948683298050514, 3.71153744479045, -0.958314847499909, 0.331970001103493, 4.43705983732471, -0.535714285714285, 0.138320833793121, -0.0479157423749959, 0, 0, 0, 0, 0},    {1.18321595661992, 1.44913767461894, 0.836660026534076, 1.09108945117996, 2.87352446607696, -1.2686700948331, 5.03115294937453, 4.25210032135381, -1.0978875820671, 0.380319414627831, 0, 0, 0, 0, 0},    {1, 0.612372435695795, 1.76776695296637, -3.68855556781659, 2.28571428571429, 0.824786098842319, 0, 5.74988908499946, 3.71153744479045, -1.28571428571429, 0, 0, 0, 0, 0},    {0.774596669241483, 3.3203915431768, 1.91702895126808, 0, -3.09838667696594, 2.68328157299975, 0, 0, 6.70820393249937, 2.32379000772445, 0, 0, 0, 0, 0},    {-1.78885438199984, 0, 4.42718872423573, 0, 0, -1.54919333848297, 0, 0, 0, 8.04984471899924, 0, 0, 0, 0, 0}};        // Compute reference derivatives    // Declare pointer to array of derivatives on FIAT element    double *derivatives = new double [num_derivatives];        // Declare coefficients    double coeff0_0 = 0;    double coeff0_1 = 0;    double coeff0_2 = 0;    double coeff0_3 = 0;    double coeff0_4 = 0;    double coeff0_5 = 0;    double coeff0_6 = 0;    double coeff0_7 = 0;    double coeff0_8 = 0;    double coeff0_9 = 0;    double coeff0_10 = 0;    double coeff0_11 = 0;    double coeff0_12 = 0;    double coeff0_13 = 0;    double coeff0_14 = 0;        // Declare new coefficients    double new_coeff0_0 = 0;    double new_coeff0_1 = 0;    double new_coeff0_2 = 0;    double new_coeff0_3 = 0;    double new_coeff0_4 = 0;    double new_coeff0_5 = 0;    double new_coeff0_6 = 0;    double new_coeff0_7 = 0;    double new_coeff0_8 = 0;    double new_coeff0_9 = 0;    double new_coeff0_10 = 0;    double new_coeff0_11 = 0;    double new_coeff0_12 = 0;    double new_coeff0_13 = 0;    double new_coeff0_14 = 0;        // Loop possible derivatives    for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)    {      // Get values from coefficients array      new_coeff0_0 = coefficients0[dof][0];      new_coeff0_1 = coefficients0[dof][1];      new_coeff0_2 = coefficients0[dof][2];      new_coeff0_3 = coefficients0[dof][3];      new_coeff0_4 = coefficients0[dof][4];      new_coeff0_5 = coefficients0[dof][5];      new_coeff0_6 = coefficients0[dof][6];      new_coeff0_7 = coefficients0[dof][7];      new_coeff0_8 = coefficients0[dof][8];      new_coeff0_9 = coefficients0[dof][9];      new_coeff0_10 = coefficients0[dof][10];      new_coeff0_11 = coefficients0[dof][11];      new_coeff0_12 = coefficients0[dof][12];      new_coeff0_13 = coefficients0[dof][13];      new_coeff0_14 = coefficients0[dof][14];          // Loop derivative order      for (unsigned int j = 0; j < n; j++)      {        // Update old coefficients        coeff0_0 = new_coeff0_0;        coeff0_1 = new_coeff0_1;        coeff0_2 = new_coeff0_2;        coeff0_3 = new_coeff0_3;        coeff0_4 = new_coeff0_4;        coeff0_5 = new_coeff0_5;        coeff0_6 = new_coeff0_6;        coeff0_7 = new_coeff0_7;        coeff0_8 = new_coeff0_8;        coeff0_9 = new_coeff0_9;        coeff0_10 = new_coeff0_10;        coeff0_11 = new_coeff0_11;        coeff0_12 = new_coeff0_12;        coeff0_13 = new_coeff0_13;        coeff0_14 = new_coeff0_14;            if(combinations[deriv_num][j] == 0)        {          new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0] + coeff0_3*dmats0[3][0] + coeff0_4*dmats0[4][0] + coeff0_5*dmats0[5][0] + coeff0_6*dmats0[6][0] + coeff0_7*dmats0[7][0] + coeff0_8*dmats0[8][0] + coeff0_9*dmats0[9][0] + coeff0_10*dmats0[10][0] + coeff0_11*dmats0[11][0] + coeff0_12*dmats0[12][0] + coeff0_13*dmats0[13][0] + coeff0_14*dmats0[14][0];          new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1] + coeff0_3*dmats0[3][1] + coeff0_4*dmats0[4][1] + coeff0_5*dmats0[5][1] + coeff0_6*dmats0[6][1] + coeff0_7*dmats0[7][1] + coeff0_8*dmats0[8][1] + coeff0_9*dmats0[9][1] + coeff0_10*dmats0[10][1] + coeff0_11*dmats0[11][1] + coeff0_12*dmats0[12][1] + coeff0_13*dmats0[13][1] + coeff0_14*dmats0[14][1];          new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2] + coeff0_3*dmats0[3][2] + coeff0_4*dmats0[4][2] + coeff0_5*dmats0[5][2] + coeff0_6*dmats0[6][2] + coeff0_7*dmats0[7][2] + coeff0_8*dmats0[8][2] + coeff0_9*dmats0[9][2] + coeff0_10*dmats0[10][2] + coeff0_11*dmats0[11][2] + coeff0_12*dmats0[12][2] + coeff0_13*dmats0[13][2] + coeff0_14*dmats0[14][2];          new_coeff0_3 = coeff0_0*dmats0[0][3] + coeff0_1*dmats0[1][3] + coeff0_2*dmats0[2][3] + coeff0_3*dmats0[3][3] + coeff0_4*dmats0[4][3] + coeff0_5*dmats0[5][3] + coeff0_6*dmats0[6][3] + coeff0_7*dmats0[7][3] + coeff0_8*dmats0[8][3] + coeff0_9*dmats0[9][3] + coeff0_10*dmats0[10][3] + coeff0_11*dmats0[11][3] + coeff0_12*dmats0[12][3] + coeff0_13*dmats0[13][3] + coeff0_14*dmats0[14][3];          new_coeff0_4 = coeff0_0*dmats0[0][4] + coeff0_1*dmats0[1][4] + coeff0_2*dmats0[2][4] + coeff0_3*dmats0[3][4] + coeff0_4*dmats0[4][4] + coeff0_5*dmats0[5][4] + coeff0_6*dmats0[6][4] + coeff0_7*dmats0[7][4] + coeff0_8*dmats0[8][4] + coeff0_9*dmats0[9][4] + coeff0_10*dmats0[10][4] + coeff0_11*dmats0[11][4] + coeff0_12*dmats0[12][4] + coeff0_13*dmats0[13][4] + coeff0_14*dmats0[14][4];          new_coeff0_5 = coeff0_0*dmats0[0][5] + coeff0_1*dmats0[1][5] + coeff0_2*dmats0[2][5] + coeff0_3*dmats0[3][5] + coeff0_4*dmats0[4][5] + coeff0_5*dmats0[5][5] + coeff0_6*dmats0[6][5] + coeff0_7*dmats0[7][5] + coeff0_8*dmats0[8][5] + coeff0_9*dmats0[9][5] + coeff0_10*dmats0[10][5] + coeff0_11*dmats0[11][5] + coeff0_12*dmats0[12][5] + coeff0_13*dmats0[13][5] + coeff0_14*dmats0[14][5];          new_coeff0_6 = coeff0_0*dmats0[0][6] + coeff0_1*dmats0[1][6] + coeff0_2*dmats0[2][6] + coeff0_3*dmats0[3][6] + coeff0_4*dmats0[4][6] + coeff0_5*dmats0[5][6] + coeff0_6*dmats0[6][6] + coeff0_7*dmats0[7][6] + coeff0_8*dmats0[8][6] + coeff0_9*dmats0[9][6] + coeff0_10*dmats0[10][6] + coeff0_11*dmats0[11][6] + coeff0_12*dmats0[12][6] + coeff0_13*dmats0[13][6] + coeff0_14*dmats0[14][6];          new_coeff0_7 = coeff0_0*dmats0[0][7] + coeff0_1*dmats0[1][7] + coeff0_2*dmats0[2][7] + coeff0_3*dmats0[3][7] + coeff0_4*dmats0[4][7] + coeff0_5*dmats0[5][7] + coeff0_6*dmats0[6][7] + coeff0_7*dmats0[7][7] + coeff0_8*dmats0[8][7] + coeff0_9*dmats0[9][7] + coeff0_10*dmats0[10][7] + coeff0_11*dmats0[11][7] + coeff0_12*dmats0[12][7] + coeff0_13*dmats0[13][7] + coeff0_14*dmats0[14][7];          new_coeff0_8 = coeff0_0*dmats0[0][8] + coeff0_1*dmats0[1][8] + coeff0_2*dmats0[2][8] + coeff0_3*dmats0[3][8] + coeff0_4*dmats0[4][8] + coeff0_5*dmats0[5][8] + coeff0_6*dmats0[6][8] + coeff0_7*dmats0[7][8] + coeff0_8*dmats0[8][8] + coeff0_9*dmats0[9][8] + coeff0_10*dmats0[10][8] + coeff0_11*dmats0[11][8] + coeff0_12*dmats0[12][8] + coeff0_13*dmats0[13][8] + coeff0_14*dmats0[14][8];          new_coeff0_9 = coeff0_0*dmats0[0][9] + coeff0_1*dmats0[1][9] + coeff0_2*dmats0[2][9] + coeff0_3*dmats0[3][9] + coeff0_4*dmats0[4][9] + coeff0_5*dmats0[5][9] + coeff0_6*dmats0[6][9] + coeff0_7*dmats0[7][9] + coeff0_8*dmats0[8][9] + coeff0_9*dmats0[9][9] + coeff0_10*dmats0[10][9] + coeff0_11*dmats0[11][9] + coeff0_12*dmats0[12][9] + coeff0_13*dmats0[13][9] + coeff0_14*dmats0[14][9];          new_coeff0_10 = coeff0_0*dmats0[0][10] + coeff0_1*dmats0[1][10] + coeff0_2*dmats0[2][10] + coeff0_3*dmats0[3][10] + coeff0_4*dmats0[4][10] + coeff0_5*dmats0[5][10] + coeff0_6*dmats0[6][10] + coeff0_7*dmats0[7][10] + coeff0_8*dmats0[8][10] + coeff0_9*dmats0[9][10] + coeff0_10*dmats0[10][10] + coeff0_11*dmats0[11][10] + coeff0_12*dmats0[12][10] + coeff0_13*dmats0[13][10] + coeff0_14*dmats0[14][10];          new_coeff0_11 = coeff0_0*dmats0[0][11] + coeff0_1*dmats0[1][11] + coeff0_2*dmats0[2][11] + coeff0_3*dmats0[3][11] + coeff0_4*dmats0[4][11] + coeff0_5*dmats0[5][11] + coeff0_6*dmats0[6][11] + coeff0_7*dmats0[7][11] + coeff0_8*dmats0[8][11] + coeff0_9*dmats0[9][11] + coeff0_10*dmats0[10][11] + coeff0_11*dmats0[11][11] + coeff0_12*dmats0[12][11] + coeff0_13*dmats0[13][11] + coeff0_14*dmats0[14][11];          new_coeff0_12 = coeff0_0*dmats0[0][12] + coeff0_1*dmats0[1][12] + coeff0_2*dmats0[2][12] + coeff0_3*dmats0[3][12] + coeff0_4*dmats0[4][12] + coeff0_5*dmats0[5][12] + coeff0_6*dmats0[6][12] + coeff0_7*dmats0[7][12] + coeff0_8*dmats0[8][12] + coeff0_9*dmats0[9][12] + coeff0_10*dmats0[10][12] + coeff0_11*dmats0[11][12] + coeff0_12*dmats0[12][12] + coeff0_13*dmats0[13][12] + coeff0_14*dmats0[14][12];          new_coeff0_13 = coeff0_0*dmats0[0][13] + coeff0_1*dmats0[1][13] + coeff0_2*dmats0[2][13] + coeff0_3*dmats0[3][13] + coeff0_4*dmats0[4][13] + coeff0_5*dmats0[5][13] + coeff0_6*dmats0[6][13] + coeff0_7*dmats0[7][13] + coeff0_8*dmats0[8][13] + coeff0_9*dmats0[9][13] + coeff0_10*dmats0[10][13] + coeff0_11*dmats0[11][13] + coeff0_12*dmats0[12][13] + coeff0_13*dmats0[13][13] + coeff0_14*dmats0[14][13];          new_coeff0_14 = coeff0_0*dmats0[0][14] + coeff0_1*dmats0[1][14] + coeff0_2*dmats0[2][14] + coeff0_3*dmats0[3][14] + coeff0_4*dmats0[4][14] + coeff0_5*dmats0[5][14] + coeff0_6*dmats0[6][14] + coeff0_7*dmats0[7][14] + coeff0_8*dmats0[8][14] + coeff0_9*dmats0[9][14] + coeff0_10*dmats0[10][14] + coeff0_11*dmats0[11][14] + coeff0_12*dmats0[12][14] + coeff0_13*dmats0[13][14] + coeff0_14*dmats0[14][14];        }        if(combinations[deriv_num][j] == 1)        {          new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0] + coeff0_3*dmats1[3][0] + coeff0_4*dmats1[4][0] + coeff0_5*dmats1[5][0] + coeff0_6*dmats1[6][0] + coeff0_7*dmats1[7][0] + coeff0_8*dmats1[8][0] + coeff0_9*dmats1[9][0] + coeff0_10*dmats1[10][0] + coeff0_11*dmats1[11][0] + coeff0_12*dmats1[12][0] + coeff0_13*dmats1[13][0] + coeff0_14*dmats1[14][0];          new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1] + coeff0_3*dmats1[3][1] + coeff0_4*dmats1[4][1] + coeff0_5*dmats1[5][1] + coeff0_6*dmats1[6][1] + coeff0_7*dmats1[7][1] + coeff0_8*dmats1[8][1] + coeff0_9*dmats1[9][1] + coeff0_10*dmats1[10][1] + coeff0_11*dmats1[11][1] + coeff0_12*dmats1[12][1] + coeff0_13*dmats1[13][1] + coeff0_14*dmats1[14][1];          new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2] + coeff0_3*dmats1[3][2] + coeff0_4*dmats1[4][2] + coeff0_5*dmats1[5][2] + coeff0_6*dmats1[6][2] + coeff0_7*dmats1[7][2] + coeff0_8*dmats1[8][2] + coeff0_9*dmats1[9][2] + coeff0_10*dmats1[10][2] + coeff0_11*dmats1[11][2] + coeff0_12*dmats1[12][2] + coeff0_13*dmats1[13][2] + coeff0_14*dmats1[14][2];          new_coeff0_3 = coeff0_0*dmats1[0][3] + coeff0_1*dmats1[1][3] + coeff0_2*dmats1[2][3] + coeff0_3*dmats1[3][3] + coeff0_4*dmats1[4][3] + coeff0_5*dmats1[5][3] + coeff0_6*dmats1[6][3] + coeff0_7*dmats1[7][3] + coeff0_8*dmats1[8][3] + coeff0_9*dmats1[9][3] + coeff0_10*dmats1[10][3] + coeff0_11*dmats1[11][3] + coeff0_12*dmats1[12][3] + coeff0_13*dmats1[13][3] + coeff0_14*dmats1[14][3];          new_coeff0_4 = coeff0_0*dmats1[0][4] + coeff0_1*dmats1[1][4] + coeff0_2*dmats1[2][4] + coeff0_3*dmats1[3][4] + coeff0_4*dmats1[4][4] + coeff0_5*dmats1[5][4] + coeff0_6*dmats1[6][4] + coeff0_7*dmats1[7][4] + coeff0_8*dmats1[8][4] + coeff0_9*dmats1[9][4] + coeff0_10*dmats1[10][4] + coeff0_11*dmats1[11][4] + coeff0_12*dmats1[12][4] + coeff0_13*dmats1[13][4] + coeff0_14*dmats1[14][4];          new_coeff0_5 = coeff0_0*dmats1[0][5] + coeff0_1*dmats1[1][5] + coeff0_2*dmats1[2][5] + coeff0_3*dmats1[3][5] + coeff0_4*dmats1[4][5] + coeff0_5*dmats1[5][5] + coeff0_6*dmats1[6][5] + coeff0_7*dmats1[7][5] + coeff0_8*dmats1[8][5] + coeff0_9*dmats1[9][5] + coeff0_10*dmats1[10][5] + coeff0_11*dmats1[11][5] + coeff0_12*dmats1[12][5] + coeff0_13*dmats1[13][5] + coeff0_14*dmats1[14][5];          new_coeff0_6 = coeff0_0*dmats1[0][6] + coeff0_1*dmats1[1][6] + coeff0_2*dmats1[2][6] + coeff0_3*dmats1[3][6] + coeff0_4*dmats1[4][6] + coeff0_5*dmats1[5][6] + coeff0_6*dmats1[6][6] + coeff0_7*dmats1[7][6] + coeff0_8*dmats1[8][6] + coeff0_9*dmats1[9][6] + coeff0_10*dmats1[10][6] + coeff0_11*dmats1[11][6] + coeff0_12*dmats1[12][6] + coeff0_13*dmats1[13][6] + coeff0_14*dmats1[14][6];          new_coeff0_7 = coeff0_0*dmats1[0][7] + coeff0_1*dmats1[1][7] + coeff0_2*dmats1[2][7] + coeff0_3*dmats1[3][7] + coeff0_4*dmats1[4][7] + coeff0_5*dmats1[5][7] + coeff0_6*dmats1[6][7] + coeff0_7*dmats1[7][7] + coeff0_8*dmats1[8][7] + coeff0_9*dmats1[9][7] + coeff0_10*dmats1[10][7] + coeff0_11*dmats1[11][7] + coeff0_12*dmats1[12][7] + coeff0_13*dmats1[13][7] + coeff0_14*dmats1[14][7];          new_coeff0_8 = coeff0_0*dmats1[0][8] + coeff0_1*dmats1[1][8] + coeff0_2*dmats1[2][8] + coeff0_3*dmats1[3][8] + coeff0_4*dmats1[4][8] + coeff0_5*dmats1[5][8] + coeff0_6*dmats1[6][8] + coeff0_7*dmats1[7][8] + coeff0_8*dmats1[8][8] + coeff0_9*dmats1[9][8] + coeff0_10*dmats1[10][8] + coeff0_11*dmats1[11][8] + coeff0_12*dmats1[12][8] + coeff0_13*dmats1[13][8] + coeff0_14*dmats1[14][8];          new_coeff0_9 = coeff0_0*dmats1[0][9] + coeff0_1*dmats1[1][9] + coeff0_2*dmats1[2][9] + coeff0_3*dmats1[3][9] + coeff0_4*dmats1[4][9] + coeff0_5*dmats1[5][9] + coeff0_6*dmats1[6][9] + coeff0_7*dmats1[7][9] + coeff0_8*dmats1[8][9] + coeff0_9*dmats1[9][9] + coeff0_10*dmats1[10][9] + coeff0_11*dmats1[11][9] + coeff0_12*dmats1[12][9] + coeff0_13*dmats1[13][9] + coeff0_14*dmats1[14][9];          new_coeff0_10 = coeff0_0*dmats1[0][10] + coeff0_1*dmats1[1][10] + coeff0_2*dmats1[2][10] + coeff0_3*dmats1[3][10] + coeff0_4*dmats1[4][10] + coeff0_5*dmats1[5][10] + coeff0_6*dmats1[6][10] + coeff0_7*dmats1[7][10] + coeff0_8*dmats1[8][10] + coeff0_9*dmats1[9][10] + coeff0_10*dmats1[10][10] + coeff0_11*dmats1[11][10] + coeff0_12*dmats1[12][10] + coeff0_13*dmats1[13][10] + coeff0_14*dmats1[14][10];          new_coeff0_11 = coeff0_0*dmats1[0][11] + coeff0_1*dmats1[1][11] + coeff0_2*dmats1[2][11] + coeff0_3*dmats1[3][11] + coeff0_4*dmats1[4][11] + coeff0_5*dmats1[5][11] + coeff0_6*dmats1[6][11] + coeff0_7*dmats1[7][11] + coeff0_8*dmats1[8][11] + coeff0_9*dmats1[9][11] + coeff0_10*dmats1[10][11] + coeff0_11*dmats1[11][11] + coeff0_12*dmats1[12][11] + coeff0_13*dmats1[13][11] + coeff0_14*dmats1[14][11];          new_coeff0_12 = coeff0_0*dmats1[0][12] + coeff0_1*dmats1[1][12] + coeff0_2*dmats1[2][12] + coeff0_3*dmats1[3][12] + coeff0_4*dmats1[4][12] + coeff0_5*dmats1[5][12] + coeff0_6*dmats1[6][12] + coeff0_7*dmats1[7][12] + coeff0_8*dmats1[8][12] + coeff0_9*dmats1[9][12] + coeff0_10*dmats1[10][12] + coeff0_11*dmats1[11][12] + coeff0_12*dmats1[12][12] + coeff0_13*dmats1[13][12] + coeff0_14*dmats1[14][12];          new_coeff0_13 = coeff0_0*dmats1[0][13] + coeff0_1*dmats1[1][13] + coeff0_2*dmats1[2][13] + coeff0_3*dmats1[3][13] + coeff0_4*dmats1[4][13] + coeff0_5*dmats1[5][13] + coeff0_6*dmats1[6][13] + coeff0_7*dmats1[7][13] + coeff0_8*dmats1[8][13] + coeff0_9*dmats1[9][13] + coeff0_10*dmats1[10][13] + coeff0_11*dmats1[11][13] + coeff0_12*dmats1[12][13] + coeff0_13*dmats1[13][13] + coeff0_14*dmats1[14][13];          new_coeff0_14 = coeff0_0*dmats1[0][14] + coeff0_1*dmats1[1][14] + coeff0_2*dmats1[2][14] + coeff0_3*dmats1[3][14] + coeff0_4*dmats1[4][14] + coeff0_5*dmats1[5][14] + coeff0_6*dmats1[6][14] + coeff0_7*dmats1[7][14] + coeff0_8*dmats1[8][14] + coeff0_9*dmats1[9][14] + coeff0_10*dmats1[10][14] + coeff0_11*dmats1[11][14] + coeff0_12*dmats1[12][14] + coeff0_13*dmats1[13][14] + coeff0_14*dmats1[14][14];        }          }      // Compute derivatives on reference element as dot product of coefficients and basisvalues      derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2 + new_coeff0_3*basisvalue3 + new_coeff0_4*basisvalue4 + new_coeff0_5*basisvalue5 + new_coeff0_6*basisvalue6 + new_coeff0_7*basisvalue7 + new_coeff0_8*basisvalue8 + new_coeff0_9*basisvalue9 + new_coeff0_10*basisvalue10 + new_coeff0_11*basisvalue11 + new_coeff0_12*basisvalue12 + new_coeff0_13*basisvalue13 + new_coeff0_14*basisvalue14;    }        // Transform derivatives back to physical element    for (unsigned int row = 0; row < num_derivatives; row++)    {      for (unsigned int col = 0; col < num_derivatives; col++)      {        values[row] += transform[row][col]*derivatives[col];      }    }    // Delete pointer to array of derivatives on FIAT element    delete [] derivatives;        // Delete pointer to array of combinations of derivatives    delete [] combinations;      }  /// Evaluate linear functional for dof i on the function f  virtual double evaluate_dof(unsigned int i,                              const ufc::function& f,                              const ufc::cell& c) const  {    double values[1];    double coordinates[2];        // Nodal coordinates on reference cell    static double X[15][2] = {{0, 0}, {1, 0}, {0, 1}, {0.75, 0.25}, {0.5, 0.5}, {0.25, 0.75}, {0, 0.25}, {0, 0.5}, {0, 0.75}, {0.25, 0}, {0.5, 0}, {0.75, 0}, {0.25, 0.25}, {0.5, 0.25}, {0.25, 0.5}};        // Components for each dof    static unsigned int components[15] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};        // Extract vertex coordinates    const double * const * x = c.coordinates;        // Evaluate basis functions for affine mapping    const double w0 = 1.0 - X[i][0] - X[i][1];    const double w1 = X[i][0];    const double w2 = X[i][1];        // Compute affine mapping x = F(X)    coordinates[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];    coordinates[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];        // Evaluate function at coordinates    f.evaluate(values, coordinates, c);        // Pick component for evaluation    return values[components[i]];  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Evaluate at vertices and use affine mapping    vertex_values[0] = dof_values[0];    vertex_values[1] = dof_values[1];    vertex_values[2] = dof_values[2];  }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -