⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mixedpoisson.h

📁 Dolfin provide a high-performance linear algebra library
💻 H
📖 第 1 页 / 共 5 页
字号:
      // Compute psitilde_bs      const double psitilde_bs_0_0 = 1;      const double psitilde_bs_0_1 = 1.5*y + 0.5;      const double psitilde_bs_1_0 = 1;          // Compute basisvalues      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;      const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0;      const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1;          // Table(s) of coefficients      const static double coefficients0[6][3] =   \      {{0.942809041582063, 0.577350269189626, -0.333333333333333},      {-0.471404520791032, -0.288675134594813, 0.166666666666667},      {0.471404520791032, -0.577350269189626, -0.666666666666667},      {0.471404520791032, 0.288675134594813, 0.833333333333333},      {-0.471404520791032, -0.288675134594813, 0.166666666666667},      {0.942809041582063, 0.577350269189626, -0.333333333333333}};          const static double coefficients1[6][3] =   \      {{-0.471404520791032, 0, -0.333333333333333},      {0.942809041582063, 0, 0.666666666666667},      {0.471404520791032, 0, 0.333333333333333},      {-0.942809041582063, 0, -0.666666666666667},      {-0.471404520791032, 0.866025403784439, 0.166666666666667},      {-0.471404520791032, -0.866025403784439, 0.166666666666667}};          // Interesting (new) part      // Tables of derivatives of the polynomial base (transpose)      const static double dmats0[3][3] =   \      {{0, 0, 0},      {2.44948974278318, 0, 0},      {0, 0, 0}};          const static double dmats1[3][3] =   \      {{0, 0, 0},      {1.22474487139159, 0, 0},      {2.12132034355964, 0, 0}};          // Compute reference derivatives      // Declare pointer to array of derivatives on FIAT element      double *derivatives = new double [2*num_derivatives];          // Declare coefficients      double coeff0_0 = 0;      double coeff0_1 = 0;      double coeff0_2 = 0;      double coeff1_0 = 0;      double coeff1_1 = 0;      double coeff1_2 = 0;          // Declare new coefficients      double new_coeff0_0 = 0;      double new_coeff0_1 = 0;      double new_coeff0_2 = 0;      double new_coeff1_0 = 0;      double new_coeff1_1 = 0;      double new_coeff1_2 = 0;          // Loop possible derivatives      for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)      {        // Get values from coefficients array        new_coeff0_0 = coefficients0[dof][0];        new_coeff0_1 = coefficients0[dof][1];        new_coeff0_2 = coefficients0[dof][2];        new_coeff1_0 = coefficients1[dof][0];        new_coeff1_1 = coefficients1[dof][1];        new_coeff1_2 = coefficients1[dof][2];            // Loop derivative order        for (unsigned int j = 0; j < n; j++)        {          // Update old coefficients          coeff0_0 = new_coeff0_0;          coeff0_1 = new_coeff0_1;          coeff0_2 = new_coeff0_2;          coeff1_0 = new_coeff1_0;          coeff1_1 = new_coeff1_1;          coeff1_2 = new_coeff1_2;              if(combinations[deriv_num][j] == 0)          {            new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0];            new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1];            new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2];            new_coeff1_0 = coeff1_0*dmats0[0][0] + coeff1_1*dmats0[1][0] + coeff1_2*dmats0[2][0];            new_coeff1_1 = coeff1_0*dmats0[0][1] + coeff1_1*dmats0[1][1] + coeff1_2*dmats0[2][1];            new_coeff1_2 = coeff1_0*dmats0[0][2] + coeff1_1*dmats0[1][2] + coeff1_2*dmats0[2][2];          }          if(combinations[deriv_num][j] == 1)          {            new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0];            new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1];            new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2];            new_coeff1_0 = coeff1_0*dmats1[0][0] + coeff1_1*dmats1[1][0] + coeff1_2*dmats1[2][0];            new_coeff1_1 = coeff1_0*dmats1[0][1] + coeff1_1*dmats1[1][1] + coeff1_2*dmats1[2][1];            new_coeff1_2 = coeff1_0*dmats1[0][2] + coeff1_1*dmats1[1][2] + coeff1_2*dmats1[2][2];          }            }        // Compute derivatives on reference element as dot product of coefficients and basisvalues        derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2;        derivatives[num_derivatives + deriv_num] = new_coeff1_0*basisvalue0 + new_coeff1_1*basisvalue1 + new_coeff1_2*basisvalue2;      }          // Transform derivatives back to physical element      for (unsigned int row = 0; row < num_derivatives; row++)      {        for (unsigned int col = 0; col < num_derivatives; col++)        {          values[row] += transform[row][col]*derivatives[col];          values[num_derivatives + row] += transform[row][col]*derivatives[num_derivatives + col];        }      }      // Delete pointer to array of derivatives on FIAT element      delete [] derivatives;          // Delete pointer to array of combinations of derivatives      delete [] combinations;        }        if (6 <= i and i <= 6)    {      // Map degree of freedom to element degree of freedom      const unsigned int dof = i - 6;          // Generate scalings      const double scalings_y_0 = 1;          // Compute psitilde_a      const double psitilde_a_0 = 1;          // Compute psitilde_bs      const double psitilde_bs_0_0 = 1;          // Compute basisvalues      const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0;          // Table(s) of coefficients      const static double coefficients0[1][1] =   \      {{1.41421356237309}};          // Interesting (new) part      // Tables of derivatives of the polynomial base (transpose)      const static double dmats0[1][1] =   \      {{0}};          const static double dmats1[1][1] =   \      {{0}};          // Compute reference derivatives      // Declare pointer to array of derivatives on FIAT element      double *derivatives = new double [num_derivatives];          // Declare coefficients      double coeff0_0 = 0;          // Declare new coefficients      double new_coeff0_0 = 0;          // Loop possible derivatives      for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)      {        // Get values from coefficients array        new_coeff0_0 = coefficients0[dof][0];            // Loop derivative order        for (unsigned int j = 0; j < n; j++)        {          // Update old coefficients          coeff0_0 = new_coeff0_0;              if(combinations[deriv_num][j] == 0)          {            new_coeff0_0 = coeff0_0*dmats0[0][0];          }          if(combinations[deriv_num][j] == 1)          {            new_coeff0_0 = coeff0_0*dmats1[0][0];          }            }        // Compute derivatives on reference element as dot product of coefficients and basisvalues        derivatives[deriv_num] = new_coeff0_0*basisvalue0;      }          // Transform derivatives back to physical element      for (unsigned int row = 0; row < num_derivatives; row++)      {        for (unsigned int col = 0; col < num_derivatives; col++)        {          values[2*num_derivatives + row] += transform[row][col]*derivatives[col];        }      }      // Delete pointer to array of derivatives on FIAT element      delete [] derivatives;          // Delete pointer to array of combinations of derivatives      delete [] combinations;        }      }  /// Evaluate linear functional for dof i on the function f  virtual double evaluate_dof(unsigned int i,                              const ufc::function& f,                              const ufc::cell& c) const  {    throw std::runtime_error("evaluate_dof not implemented for this type of element");  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * x = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = x[1][0] - x[0][0];    const double J_01 = x[2][0] - x[0][0];    const double J_10 = x[1][1] - x[0][1];    const double J_11 = x[2][1] - x[0][1];          // Compute determinant of Jacobian    double detJ = J_00*J_11 - J_01*J_10;          // Compute inverse of Jacobian        // Take absolute value of determinant    detJ = std::abs(detJ);        // Compute signs of edges (need to flip edge degrees of freedom)        // Compute the edges    const double e0_0 = x[2][0] - x[1][0];    const double e0_1 = x[2][1] - x[1][1];    const double e1_0 = x[2][0] - x[0][0];    const double e1_1 = x[2][1] - x[0][1];    const double e2_0 = x[1][0] - x[0][0];    const double e2_1 = x[1][1] - x[0][1];        // Compute edges normals by rotating edges 90 degrees clockwise    const double n0_0 = e0_1;    const double n0_1 = -e0_0;    const double n1_0 = e1_1;    const double n1_1 = -e1_0;    const double n2_0 = e2_1;    const double n2_1 = -e2_0;        // Compute the orientation of the normals relative to the cell    int sign_facet0 = n0_0*e2_0 + n0_1*e2_1 > 0 ? 1 : -1;    int sign_facet1 = n1_0*e0_0 + n1_1*e0_1 > 0 ? 1 : -1;    int sign_facet2 = n2_0*e1_0 + n2_1*e1_1 < 0 ? 1 : -1;        // Evaluate at vertices and use Piola mapping    vertex_values[0] = (1.0/detJ)*(sign_facet1*dof_values[2]*2*J_00 + sign_facet1*dof_values[3]*J_00 + sign_facet2*dof_values[4]*(-2*J_01) + sign_facet2*dof_values[5]*J_01);    vertex_values[1] = (1.0/detJ)*(sign_facet0*dof_values[0]*2*J_00 + sign_facet0*dof_values[1]*J_00 + sign_facet2*dof_values[4]*(J_00 + J_01) + sign_facet2*dof_values[5]*(2*J_00 - 2*J_01));    vertex_values[2] = (1.0/detJ)*(sign_facet0*dof_values[0]*J_01 + sign_facet0*dof_values[1]*2*J_01 + sign_facet1*dof_values[2]*(J_00 + J_01) + sign_facet1*dof_values[3]*(2*J_00 - 2*J_01));    vertex_values[3] = (1.0/detJ)*(sign_facet1*dof_values[2]*2*J_10 + sign_facet1*dof_values[3]*J_10 + sign_facet2*dof_values[4]*(-2*J_11) + sign_facet2*dof_values[5]*J_11);    vertex_values[4] = (1.0/detJ)*(sign_facet0*dof_values[0]*2*J_10 + sign_facet0*dof_values[1]*J_10 + sign_facet2*dof_values[4]*(J_10 + J_11) + sign_facet2*dof_values[5]*(2*J_10 - 2*J_11));    vertex_values[5] = (1.0/detJ)*(sign_facet0*dof_values[0]*J_11 + sign_facet0*dof_values[1]*2*J_11 + sign_facet1*dof_values[2]*(J_10 + J_11) + sign_facet1*dof_values[3]*(2*J_10 - 2*J_11));    // Evaluate at vertices and use affine mapping    vertex_values[6] = dof_values[6];    vertex_values[7] = dof_values[6];    vertex_values[8] = dof_values[6];  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const  {    return 2;  }  /// Create a new finite element for sub element i (for a mixed element)  virtual ufc::finite_element* create_sub_element(unsigned int i) const  {    switch ( i )    {    case 0:      return new UFC_MixedPoissonBilinearForm_finite_element_0_0();      break;    case 1:      return new UFC_MixedPoissonBilinearForm_finite_element_0_1();      break;    }    return 0;  }};/// This class defines the interface for a finite element.class UFC_MixedPoissonBilinearForm_finite_element_1_0: public ufc::finite_element{public:  /// Constructor  UFC_MixedPoissonBilinearForm_finite_element_1_0() : ufc::finite_element()  {    // Do nothing  }  /// Destructor  virtual ~UFC_MixedPoissonBilinearForm_finite_element_1_0()  {    // Do nothing  }  /// Return a string identifying the finite element  virtual const char* signature() const  {    return "Brezzi-Douglas-Marini finite element of degree 1 on a triangle";  }  /// Return the cell shape  virtual ufc::shape cell_shape() const  {    return ufc::triangle;  }  /// Return the dimension of the finite element function space  virtual unsigned int space_dimension() const  {    return 6;  }  /// Return the rank of the value space  virtual unsigned int value_rank() const  {    return 1;  }  /// Return the dimension of the value space for axis i  virtual unsigned int value_dimension(unsigned int i) const  {    return 2;  }  /// Evaluate basis function i at given point in cell  virtual void evaluate_basis(unsigned int i,                              double* values,                              const double* coordinates,                              const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * element_coordinates = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];      

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -