📄 mixedpoisson.h
字号:
// Compute psitilde_bs const double psitilde_bs_0_0 = 1; const double psitilde_bs_0_1 = 1.5*y + 0.5; const double psitilde_bs_1_0 = 1; // Compute basisvalues const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0; const double basisvalue1 = 1.73205080756888*psitilde_a_1*scalings_y_1*psitilde_bs_1_0; const double basisvalue2 = psitilde_a_0*scalings_y_0*psitilde_bs_0_1; // Table(s) of coefficients const static double coefficients0[6][3] = \ {{0.942809041582063, 0.577350269189626, -0.333333333333333}, {-0.471404520791032, -0.288675134594813, 0.166666666666667}, {0.471404520791032, -0.577350269189626, -0.666666666666667}, {0.471404520791032, 0.288675134594813, 0.833333333333333}, {-0.471404520791032, -0.288675134594813, 0.166666666666667}, {0.942809041582063, 0.577350269189626, -0.333333333333333}}; const static double coefficients1[6][3] = \ {{-0.471404520791032, 0, -0.333333333333333}, {0.942809041582063, 0, 0.666666666666667}, {0.471404520791032, 0, 0.333333333333333}, {-0.942809041582063, 0, -0.666666666666667}, {-0.471404520791032, 0.866025403784439, 0.166666666666667}, {-0.471404520791032, -0.866025403784439, 0.166666666666667}}; // Interesting (new) part // Tables of derivatives of the polynomial base (transpose) const static double dmats0[3][3] = \ {{0, 0, 0}, {2.44948974278318, 0, 0}, {0, 0, 0}}; const static double dmats1[3][3] = \ {{0, 0, 0}, {1.22474487139159, 0, 0}, {2.12132034355964, 0, 0}}; // Compute reference derivatives // Declare pointer to array of derivatives on FIAT element double *derivatives = new double [2*num_derivatives]; // Declare coefficients double coeff0_0 = 0; double coeff0_1 = 0; double coeff0_2 = 0; double coeff1_0 = 0; double coeff1_1 = 0; double coeff1_2 = 0; // Declare new coefficients double new_coeff0_0 = 0; double new_coeff0_1 = 0; double new_coeff0_2 = 0; double new_coeff1_0 = 0; double new_coeff1_1 = 0; double new_coeff1_2 = 0; // Loop possible derivatives for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++) { // Get values from coefficients array new_coeff0_0 = coefficients0[dof][0]; new_coeff0_1 = coefficients0[dof][1]; new_coeff0_2 = coefficients0[dof][2]; new_coeff1_0 = coefficients1[dof][0]; new_coeff1_1 = coefficients1[dof][1]; new_coeff1_2 = coefficients1[dof][2]; // Loop derivative order for (unsigned int j = 0; j < n; j++) { // Update old coefficients coeff0_0 = new_coeff0_0; coeff0_1 = new_coeff0_1; coeff0_2 = new_coeff0_2; coeff1_0 = new_coeff1_0; coeff1_1 = new_coeff1_1; coeff1_2 = new_coeff1_2; if(combinations[deriv_num][j] == 0) { new_coeff0_0 = coeff0_0*dmats0[0][0] + coeff0_1*dmats0[1][0] + coeff0_2*dmats0[2][0]; new_coeff0_1 = coeff0_0*dmats0[0][1] + coeff0_1*dmats0[1][1] + coeff0_2*dmats0[2][1]; new_coeff0_2 = coeff0_0*dmats0[0][2] + coeff0_1*dmats0[1][2] + coeff0_2*dmats0[2][2]; new_coeff1_0 = coeff1_0*dmats0[0][0] + coeff1_1*dmats0[1][0] + coeff1_2*dmats0[2][0]; new_coeff1_1 = coeff1_0*dmats0[0][1] + coeff1_1*dmats0[1][1] + coeff1_2*dmats0[2][1]; new_coeff1_2 = coeff1_0*dmats0[0][2] + coeff1_1*dmats0[1][2] + coeff1_2*dmats0[2][2]; } if(combinations[deriv_num][j] == 1) { new_coeff0_0 = coeff0_0*dmats1[0][0] + coeff0_1*dmats1[1][0] + coeff0_2*dmats1[2][0]; new_coeff0_1 = coeff0_0*dmats1[0][1] + coeff0_1*dmats1[1][1] + coeff0_2*dmats1[2][1]; new_coeff0_2 = coeff0_0*dmats1[0][2] + coeff0_1*dmats1[1][2] + coeff0_2*dmats1[2][2]; new_coeff1_0 = coeff1_0*dmats1[0][0] + coeff1_1*dmats1[1][0] + coeff1_2*dmats1[2][0]; new_coeff1_1 = coeff1_0*dmats1[0][1] + coeff1_1*dmats1[1][1] + coeff1_2*dmats1[2][1]; new_coeff1_2 = coeff1_0*dmats1[0][2] + coeff1_1*dmats1[1][2] + coeff1_2*dmats1[2][2]; } } // Compute derivatives on reference element as dot product of coefficients and basisvalues derivatives[deriv_num] = new_coeff0_0*basisvalue0 + new_coeff0_1*basisvalue1 + new_coeff0_2*basisvalue2; derivatives[num_derivatives + deriv_num] = new_coeff1_0*basisvalue0 + new_coeff1_1*basisvalue1 + new_coeff1_2*basisvalue2; } // Transform derivatives back to physical element for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { values[row] += transform[row][col]*derivatives[col]; values[num_derivatives + row] += transform[row][col]*derivatives[num_derivatives + col]; } } // Delete pointer to array of derivatives on FIAT element delete [] derivatives; // Delete pointer to array of combinations of derivatives delete [] combinations; } if (6 <= i and i <= 6) { // Map degree of freedom to element degree of freedom const unsigned int dof = i - 6; // Generate scalings const double scalings_y_0 = 1; // Compute psitilde_a const double psitilde_a_0 = 1; // Compute psitilde_bs const double psitilde_bs_0_0 = 1; // Compute basisvalues const double basisvalue0 = 0.707106781186548*psitilde_a_0*scalings_y_0*psitilde_bs_0_0; // Table(s) of coefficients const static double coefficients0[1][1] = \ {{1.41421356237309}}; // Interesting (new) part // Tables of derivatives of the polynomial base (transpose) const static double dmats0[1][1] = \ {{0}}; const static double dmats1[1][1] = \ {{0}}; // Compute reference derivatives // Declare pointer to array of derivatives on FIAT element double *derivatives = new double [num_derivatives]; // Declare coefficients double coeff0_0 = 0; // Declare new coefficients double new_coeff0_0 = 0; // Loop possible derivatives for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++) { // Get values from coefficients array new_coeff0_0 = coefficients0[dof][0]; // Loop derivative order for (unsigned int j = 0; j < n; j++) { // Update old coefficients coeff0_0 = new_coeff0_0; if(combinations[deriv_num][j] == 0) { new_coeff0_0 = coeff0_0*dmats0[0][0]; } if(combinations[deriv_num][j] == 1) { new_coeff0_0 = coeff0_0*dmats1[0][0]; } } // Compute derivatives on reference element as dot product of coefficients and basisvalues derivatives[deriv_num] = new_coeff0_0*basisvalue0; } // Transform derivatives back to physical element for (unsigned int row = 0; row < num_derivatives; row++) { for (unsigned int col = 0; col < num_derivatives; col++) { values[2*num_derivatives + row] += transform[row][col]*derivatives[col]; } } // Delete pointer to array of derivatives on FIAT element delete [] derivatives; // Delete pointer to array of combinations of derivatives delete [] combinations; } } /// Evaluate linear functional for dof i on the function f virtual double evaluate_dof(unsigned int i, const ufc::function& f, const ufc::cell& c) const { throw std::runtime_error("evaluate_dof not implemented for this type of element"); } /// Interpolate vertex values from dof values virtual void interpolate_vertex_values(double* vertex_values, const double* dof_values, const ufc::cell& c) const { // Extract vertex coordinates const double * const * x = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = x[1][0] - x[0][0]; const double J_01 = x[2][0] - x[0][0]; const double J_10 = x[1][1] - x[0][1]; const double J_11 = x[2][1] - x[0][1]; // Compute determinant of Jacobian double detJ = J_00*J_11 - J_01*J_10; // Compute inverse of Jacobian // Take absolute value of determinant detJ = std::abs(detJ); // Compute signs of edges (need to flip edge degrees of freedom) // Compute the edges const double e0_0 = x[2][0] - x[1][0]; const double e0_1 = x[2][1] - x[1][1]; const double e1_0 = x[2][0] - x[0][0]; const double e1_1 = x[2][1] - x[0][1]; const double e2_0 = x[1][0] - x[0][0]; const double e2_1 = x[1][1] - x[0][1]; // Compute edges normals by rotating edges 90 degrees clockwise const double n0_0 = e0_1; const double n0_1 = -e0_0; const double n1_0 = e1_1; const double n1_1 = -e1_0; const double n2_0 = e2_1; const double n2_1 = -e2_0; // Compute the orientation of the normals relative to the cell int sign_facet0 = n0_0*e2_0 + n0_1*e2_1 > 0 ? 1 : -1; int sign_facet1 = n1_0*e0_0 + n1_1*e0_1 > 0 ? 1 : -1; int sign_facet2 = n2_0*e1_0 + n2_1*e1_1 < 0 ? 1 : -1; // Evaluate at vertices and use Piola mapping vertex_values[0] = (1.0/detJ)*(sign_facet1*dof_values[2]*2*J_00 + sign_facet1*dof_values[3]*J_00 + sign_facet2*dof_values[4]*(-2*J_01) + sign_facet2*dof_values[5]*J_01); vertex_values[1] = (1.0/detJ)*(sign_facet0*dof_values[0]*2*J_00 + sign_facet0*dof_values[1]*J_00 + sign_facet2*dof_values[4]*(J_00 + J_01) + sign_facet2*dof_values[5]*(2*J_00 - 2*J_01)); vertex_values[2] = (1.0/detJ)*(sign_facet0*dof_values[0]*J_01 + sign_facet0*dof_values[1]*2*J_01 + sign_facet1*dof_values[2]*(J_00 + J_01) + sign_facet1*dof_values[3]*(2*J_00 - 2*J_01)); vertex_values[3] = (1.0/detJ)*(sign_facet1*dof_values[2]*2*J_10 + sign_facet1*dof_values[3]*J_10 + sign_facet2*dof_values[4]*(-2*J_11) + sign_facet2*dof_values[5]*J_11); vertex_values[4] = (1.0/detJ)*(sign_facet0*dof_values[0]*2*J_10 + sign_facet0*dof_values[1]*J_10 + sign_facet2*dof_values[4]*(J_10 + J_11) + sign_facet2*dof_values[5]*(2*J_10 - 2*J_11)); vertex_values[5] = (1.0/detJ)*(sign_facet0*dof_values[0]*J_11 + sign_facet0*dof_values[1]*2*J_11 + sign_facet1*dof_values[2]*(J_10 + J_11) + sign_facet1*dof_values[3]*(2*J_10 - 2*J_11)); // Evaluate at vertices and use affine mapping vertex_values[6] = dof_values[6]; vertex_values[7] = dof_values[6]; vertex_values[8] = dof_values[6]; } /// Return the number of sub elements (for a mixed element) virtual unsigned int num_sub_elements() const { return 2; } /// Create a new finite element for sub element i (for a mixed element) virtual ufc::finite_element* create_sub_element(unsigned int i) const { switch ( i ) { case 0: return new UFC_MixedPoissonBilinearForm_finite_element_0_0(); break; case 1: return new UFC_MixedPoissonBilinearForm_finite_element_0_1(); break; } return 0; }};/// This class defines the interface for a finite element.class UFC_MixedPoissonBilinearForm_finite_element_1_0: public ufc::finite_element{public: /// Constructor UFC_MixedPoissonBilinearForm_finite_element_1_0() : ufc::finite_element() { // Do nothing } /// Destructor virtual ~UFC_MixedPoissonBilinearForm_finite_element_1_0() { // Do nothing } /// Return a string identifying the finite element virtual const char* signature() const { return "Brezzi-Douglas-Marini finite element of degree 1 on a triangle"; } /// Return the cell shape virtual ufc::shape cell_shape() const { return ufc::triangle; } /// Return the dimension of the finite element function space virtual unsigned int space_dimension() const { return 6; } /// Return the rank of the value space virtual unsigned int value_rank() const { return 1; } /// Return the dimension of the value space for axis i virtual unsigned int value_dimension(unsigned int i) const { return 2; } /// Evaluate basis function i at given point in cell virtual void evaluate_basis(unsigned int i, double* values, const double* coordinates, const ufc::cell& c) const { // Extract vertex coordinates const double * const * element_coordinates = c.coordinates; // Compute Jacobian of affine map from reference cell const double J_00 = element_coordinates[1][0] - element_coordinates[0][0]; const double J_01 = element_coordinates[2][0] - element_coordinates[0][0]; const double J_10 = element_coordinates[1][1] - element_coordinates[0][1]; const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -