⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 poisson.h

📁 Dolfin provide a high-performance linear algebra library
💻 H
📖 第 1 页 / 共 5 页
字号:
      x = 1.0;    else      x = -2.0 * (1.0 + x)/(y + z) - 1.0;    if (std::abs(z - 1.0) < 1e-14)      y = -1.0;    else      y = 2.0 * (1.0 + y)/(1.0 - z) - 1.0;        // Reset values    *values = 0;        // Map degree of freedom to element degree of freedom    const unsigned int dof = i;        // Generate scalings    const double scalings_y_0 = 1;    const double scalings_z_0 = 1;        // Compute psitilde_a    const double psitilde_a_0 = 1;        // Compute psitilde_bs    const double psitilde_bs_0_0 = 1;        // Compute psitilde_cs    const double psitilde_cs_00_0 = 1;        // Compute basisvalues    const double basisvalue0 = 0.866025403784439*psitilde_a_0*scalings_y_0*psitilde_bs_0_0*scalings_z_0*psitilde_cs_00_0;        // Table(s) of coefficients    const static double coefficients0[1][1] = \    {{1.15470053837925}};        // Extract relevant coefficients    const double coeff0_0 = coefficients0[dof][0];        // Compute value(s)    *values = coeff0_0*basisvalue0;  }  /// Evaluate order n derivatives of basis function i at given point in cell  virtual void evaluate_basis_derivatives(unsigned int i,                                          unsigned int n,                                          double* values,                                          const double* coordinates,                                          const ufc::cell& c) const  {    // Extract vertex coordinates    const double * const * element_coordinates = c.coordinates;        // Compute Jacobian of affine map from reference cell    const double J_00 = element_coordinates[1][0] - element_coordinates[0][0];    const double J_01 = element_coordinates[2][0] - element_coordinates[0][0];    const double J_02 = element_coordinates[3][0] - element_coordinates[0][0];    const double J_10 = element_coordinates[1][1] - element_coordinates[0][1];    const double J_11 = element_coordinates[2][1] - element_coordinates[0][1];    const double J_12 = element_coordinates[3][1] - element_coordinates[0][1];    const double J_20 = element_coordinates[1][2] - element_coordinates[0][2];    const double J_21 = element_coordinates[2][2] - element_coordinates[0][2];    const double J_22 = element_coordinates[3][2] - element_coordinates[0][2];          // Compute sub determinants    const double d00 = J_11*J_22 - J_12*J_21;    const double d01 = J_12*J_20 - J_10*J_22;    const double d02 = J_10*J_21 - J_11*J_20;        const double d10 = J_02*J_21 - J_01*J_22;    const double d11 = J_00*J_22 - J_02*J_20;    const double d12 = J_01*J_20 - J_00*J_21;        const double d20 = J_01*J_12 - J_02*J_11;    const double d21 = J_02*J_10 - J_00*J_12;    const double d22 = J_00*J_11 - J_01*J_10;          // Compute determinant of Jacobian    double detJ = J_00*d00 + J_10*d10 + J_20*d20;        // Compute constants    const double C0 = element_coordinates[3][0] + element_coordinates[2][0] \                    + element_coordinates[1][0] - element_coordinates[0][0];    const double C1 = element_coordinates[3][1] + element_coordinates[2][1] \                    + element_coordinates[1][1] - element_coordinates[0][1];    const double C2 = element_coordinates[3][2] + element_coordinates[2][2] \                    + element_coordinates[1][2] - element_coordinates[0][2];        // Get coordinates and map to the reference (FIAT) element    double x = coordinates[0];    double y = coordinates[1];    double z = coordinates[2];        x = (2.0*d00*x + 2.0*d10*y + 2.0*d20*z - d00*C0 - d10*C1 - d20*C2) / detJ;    y = (2.0*d01*x + 2.0*d11*y + 2.0*d21*z - d01*C0 - d11*C1 - d21*C2) / detJ;    z = (2.0*d02*x + 2.0*d12*y + 2.0*d22*z - d02*C0 - d12*C1 - d22*C2) / detJ;        // Map coordinates to the reference cube    if (std::abs(y + z) < 1e-14)      x = 1.0;    else      x = -2.0 * (1.0 + x)/(y + z) - 1.0;    if (std::abs(z - 1.0) < 1e-14)      y = -1.0;    else      y = 2.0 * (1.0 + y)/(1.0 - z) - 1.0;        // Compute number of derivatives    unsigned int num_derivatives = 1;        for (unsigned int j = 0; j < n; j++)      num_derivatives *= 3;            // Declare pointer to two dimensional array that holds combinations of derivatives and initialise    unsigned int **combinations = new unsigned int *[num_derivatives];            for (unsigned int j = 0; j < num_derivatives; j++)    {      combinations[j] = new unsigned int [n];      for (unsigned int k = 0; k < n; k++)        combinations[j][k] = 0;    }            // Generate combinations of derivatives    for (unsigned int row = 1; row < num_derivatives; row++)    {      for (unsigned int num = 0; num < row; num++)      {        for (unsigned int col = n-1; col+1 > 0; col--)        {          if (combinations[row][col] + 1 > 2)            combinations[row][col] = 0;          else          {            combinations[row][col] += 1;            break;          }        }      }    }        // Compute inverse of Jacobian, components are scaled because of difference in FFC/FIAT reference elements    const double Jinv[3][3] ={{2*d00 / detJ, 2*d10 / detJ, 2*d20 / detJ}, {2*d01 / detJ, 2*d11 / detJ, 2*d21 / detJ}, {2*d02 / detJ, 2*d12 / detJ, 2*d22 / detJ}};        // Declare transformation matrix    // Declare pointer to two dimensional array and initialise    double **transform = new double *[num_derivatives];            for (unsigned int j = 0; j < num_derivatives; j++)    {      transform[j] = new double [num_derivatives];      for (unsigned int k = 0; k < num_derivatives; k++)        transform[j][k] = 1;    }        // Construct transformation matrix    for (unsigned int row = 0; row < num_derivatives; row++)    {      for (unsigned int col = 0; col < num_derivatives; col++)      {        for (unsigned int k = 0; k < n; k++)          transform[row][col] *= Jinv[combinations[col][k]][combinations[row][k]];      }    }        // Reset values    for (unsigned int j = 0; j < 1*num_derivatives; j++)      values[j] = 0;        // Map degree of freedom to element degree of freedom    const unsigned int dof = i;        // Generate scalings    const double scalings_y_0 = 1;    const double scalings_z_0 = 1;        // Compute psitilde_a    const double psitilde_a_0 = 1;        // Compute psitilde_bs    const double psitilde_bs_0_0 = 1;        // Compute psitilde_cs    const double psitilde_cs_00_0 = 1;        // Compute basisvalues    const double basisvalue0 = 0.866025403784439*psitilde_a_0*scalings_y_0*psitilde_bs_0_0*scalings_z_0*psitilde_cs_00_0;        // Table(s) of coefficients    const static double coefficients0[1][1] = \    {{1.15470053837925}};        // Interesting (new) part    // Tables of derivatives of the polynomial base (transpose)    const static double dmats0[1][1] = \    {{0}};        const static double dmats1[1][1] = \    {{0}};        const static double dmats2[1][1] = \    {{0}};        // Compute reference derivatives    // Declare pointer to array of derivatives on FIAT element    double *derivatives = new double [num_derivatives];        // Declare coefficients    double coeff0_0 = 0;        // Declare new coefficients    double new_coeff0_0 = 0;        // Loop possible derivatives    for (unsigned int deriv_num = 0; deriv_num < num_derivatives; deriv_num++)    {      // Get values from coefficients array      new_coeff0_0 = coefficients0[dof][0];          // Loop derivative order      for (unsigned int j = 0; j < n; j++)      {        // Update old coefficients        coeff0_0 = new_coeff0_0;            if(combinations[deriv_num][j] == 0)        {          new_coeff0_0 = coeff0_0*dmats0[0][0];        }        if(combinations[deriv_num][j] == 1)        {          new_coeff0_0 = coeff0_0*dmats1[0][0];        }        if(combinations[deriv_num][j] == 2)        {          new_coeff0_0 = coeff0_0*dmats2[0][0];        }          }      // Compute derivatives on reference element as dot product of coefficients and basisvalues      derivatives[deriv_num] = new_coeff0_0*basisvalue0;    }        // Transform derivatives back to physical element    for (unsigned int row = 0; row < num_derivatives; row++)    {      for (unsigned int col = 0; col < num_derivatives; col++)      {        values[row] += transform[row][col]*derivatives[col];      }    }    // Delete pointer to array of derivatives on FIAT element    delete [] derivatives;        // Delete pointer to array of combinations of derivatives    delete [] combinations;      }  /// Evaluate linear functional for dof i on the function f  virtual double evaluate_dof(unsigned int i,                              const ufc::function& f,                              const ufc::cell& c) const  {    double values[1];    double coordinates[3];        // Nodal coordinates on reference cell    static double X[1][3] = {{0.25, 0.25, 0.25}};        // Components for each dof    static unsigned int components[1] = {0};        // Extract vertex coordinates    const double * const * x = c.coordinates;        // Evaluate basis functions for affine mapping    const double w0 = 1.0 - X[i][0] - X[i][1] - X[i][2];    const double w1 = X[i][0];    const double w2 = X[i][1];    const double w3 = X[i][2];        // Compute affine mapping x = F(X)    coordinates[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0] + w3*x[3][0];    coordinates[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1] + w3*x[3][1];    coordinates[2] = w0*x[0][2] + w1*x[1][2] + w2*x[2][2] + w3*x[3][2];        // Evaluate function at coordinates    f.evaluate(values, coordinates, c);        // Pick component for evaluation    return values[components[i]];  }  /// Interpolate vertex values from dof values  virtual void interpolate_vertex_values(double* vertex_values,                                         const double* dof_values,                                         const ufc::cell& c) const  {    // Evaluate at vertices and use affine mapping    vertex_values[0] = dof_values[0];    vertex_values[1] = dof_values[0];    vertex_values[2] = dof_values[0];    vertex_values[3] = dof_values[0];  }  /// Return the number of sub elements (for a mixed element)  virtual unsigned int num_sub_elements() const  {    return 1;  }  /// Create a new finite element for sub element i (for a mixed element)  virtual ufc::finite_element* create_sub_element(unsigned int i) const  {    return new UFC_PoissonBilinearForm_finite_element_2_0();  }};/// This class defines the interface for a finite element.class UFC_PoissonBilinearForm_finite_element_2_1: public ufc::finite_element{public:  /// Constructor  UFC_PoissonBilinearForm_finite_element_2_1() : ufc::finite_element()  {    // Do nothing  }  /// Destructor  virtual ~UFC_PoissonBilinearForm_finite_element_2_1()  {    // Do nothing  }  /// Return a string identifying the finite element  virtual const char* signature() const  {    return "Discontinuous Lagrange finite element of degree 0 on a tetrahedron";  }  /// Return the cell shape  virtual ufc::shape cell_shape() const  {    return ufc::tetrahedron;  }  /// Return the dimension of the finite element function space  virtual unsigned int space_dimension() const  {    return 1;  }  /// Return the rank of the value space  virtual unsigned int value_rank() const  {    return 0;  }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -