📄 poisson.h
字号:
/// degrees of freedom (dofs).class UFC_PoissonBilinearForm_dof_map_1: public ufc::dof_map{private: unsigned int __global_dimension;public: /// Constructor UFC_PoissonBilinearForm_dof_map_1() : ufc::dof_map() { __global_dimension = 0; } /// Destructor virtual ~UFC_PoissonBilinearForm_dof_map_1() { // Do nothing } /// Return a string identifying the dof map virtual const char* signature() const { return "FFC dof map for Discontinuous Lagrange finite element of degree 1 on a tetrahedron"; } /// Return true iff mesh entities of topological dimension d are needed virtual bool needs_mesh_entities(unsigned int d) const { switch ( d ) { case 0: return false; break; case 1: return false; break; case 2: return false; break; case 3: return true; break; } return false; } /// Initialize dof map for mesh (return true iff init_cell() is needed) virtual bool init_mesh(const ufc::mesh& m) { __global_dimension = 4*m.num_entities[3]; return false; } /// Initialize dof map for given cell virtual void init_cell(const ufc::mesh& m, const ufc::cell& c) { // Do nothing } /// Finish initialization of dof map for cells virtual void init_cell_finalize() { // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 4; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 0; } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = 4*c.entity_indices[3][0]; dofs[1] = 4*c.entity_indices[3][0] + 1; dofs[2] = 4*c.entity_indices[3][0] + 2; dofs[3] = 4*c.entity_indices[3][0] + 3; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: break; case 1: break; case 2: break; case 3: break; } } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { const double * const * x = c.coordinates; coordinates[0][0] = x[0][0]; coordinates[0][1] = x[0][1]; coordinates[0][2] = x[0][2]; coordinates[1][0] = x[1][0]; coordinates[1][1] = x[1][1]; coordinates[1][2] = x[1][2]; coordinates[2][0] = x[2][0]; coordinates[2][1] = x[2][1]; coordinates[2][2] = x[2][2]; coordinates[3][0] = x[3][0]; coordinates[3][1] = x[3][1]; coordinates[3][2] = x[3][2]; } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 1; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new UFC_PoissonBilinearForm_dof_map_1(); }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class UFC_PoissonBilinearForm_dof_map_2: public ufc::dof_map{private: unsigned int __global_dimension;public: /// Constructor UFC_PoissonBilinearForm_dof_map_2() : ufc::dof_map() { __global_dimension = 0; } /// Destructor virtual ~UFC_PoissonBilinearForm_dof_map_2() { // Do nothing } /// Return a string identifying the dof map virtual const char* signature() const { return "FFC dof map for Discontinuous Lagrange finite element of degree 0 on a tetrahedron"; } /// Return true iff mesh entities of topological dimension d are needed virtual bool needs_mesh_entities(unsigned int d) const { switch ( d ) { case 0: return false; break; case 1: return false; break; case 2: return false; break; case 3: return true; break; } return false; } /// Initialize dof map for mesh (return true iff init_cell() is needed) virtual bool init_mesh(const ufc::mesh& m) { __global_dimension = m.num_entities[3]; return false; } /// Initialize dof map for given cell virtual void init_cell(const ufc::mesh& m, const ufc::cell& c) { // Do nothing } /// Finish initialization of dof map for cells virtual void init_cell_finalize() { // Do nothing } /// Return the dimension of the global finite element function space virtual unsigned int global_dimension() const { return __global_dimension; } /// Return the dimension of the local finite element function space virtual unsigned int local_dimension() const { return 1; } /// Return the number of dofs on each cell facet virtual unsigned int num_facet_dofs() const { return 0; } /// Tabulate the local-to-global mapping of dofs on a cell virtual void tabulate_dofs(unsigned int* dofs, const ufc::mesh& m, const ufc::cell& c) const { dofs[0] = c.entity_indices[3][0]; } /// Tabulate the local-to-local mapping from facet dofs to cell dofs virtual void tabulate_facet_dofs(unsigned int* dofs, unsigned int facet) const { switch ( facet ) { case 0: break; case 1: break; case 2: break; case 3: break; } } /// Tabulate the coordinates of all dofs on a cell virtual void tabulate_coordinates(double** coordinates, const ufc::cell& c) const { const double * const * x = c.coordinates; coordinates[0][0] = 0.25*x[0][0] + 0.25*x[1][0] + 0.25*x[2][0] + 0.25*x[3][0]; coordinates[0][1] = 0.25*x[0][1] + 0.25*x[1][1] + 0.25*x[2][1] + 0.25*x[3][1]; coordinates[0][2] = 0.25*x[0][2] + 0.25*x[1][2] + 0.25*x[2][2] + 0.25*x[3][2]; } /// Return the number of sub dof maps (for a mixed element) virtual unsigned int num_sub_dof_maps() const { return 1; } /// Create a new dof_map for sub dof map i (for a mixed element) virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const { return new UFC_PoissonBilinearForm_dof_map_2(); }};/// This class defines the interface for the tabulation of the/// interior facet tensor corresponding to the local contribution to/// a form from the integral over an interior facet.class UFC_PoissonBilinearForm_interior_facet_integral_0: public ufc::interior_facet_integral{public: /// Constructor UFC_PoissonBilinearForm_interior_facet_integral_0() : ufc::interior_facet_integral() { // Do nothing } /// Destructor virtual ~UFC_PoissonBilinearForm_interior_facet_integral_0() { // Do nothing } /// Tabulate the tensor for the contribution from a local interior facet virtual void tabulate_tensor(double* A, const double * const * w, const ufc::cell& c0, const ufc::cell& c1, unsigned int facet0, unsigned int facet1) const { // Extract vertex coordinates const double * const * x0 = c0.coordinates; // Compute Jacobian of affine map from reference cell const double J0_00 = x0[1][0] - x0[0][0]; const double J0_01 = x0[2][0] - x0[0][0]; const double J0_02 = x0[3][0] - x0[0][0]; const double J0_10 = x0[1][1] - x0[0][1]; const double J0_11 = x0[2][1] - x0[0][1]; const double J0_12 = x0[3][1] - x0[0][1]; const double J0_20 = x0[1][2] - x0[0][2]; const double J0_21 = x0[2][2] - x0[0][2]; const double J0_22 = x0[3][2] - x0[0][2]; // Compute sub determinants const double d0_00 = J0_11*J0_22 - J0_12*J0_21; const double d0_10 = J0_02*J0_21 - J0_01*J0_22; const double d0_20 = J0_01*J0_12 - J0_02*J0_11; // Compute determinant of Jacobian double detJ0 = J0_00*d0_00 + J0_10*d0_10 + J0_20*d0_20; // Compute inverse of Jacobian // Take absolute value of determinant detJ0 = std::abs(detJ0); // Extract vertex coordinates const double * const * x1 = c1.coordinates; // Compute Jacobian of affine map from reference cell const double J1_00 = x1[1][0] - x1[0][0]; const double J1_01 = x1[2][0] - x1[0][0]; const double J1_02 = x1[3][0] - x1[0][0]; const double J1_10 = x1[1][1] - x1[0][1]; const double J1_11 = x1[2][1] - x1[0][1]; const double J1_12 = x1[3][1] - x1[0][1]; const double J1_20 = x1[1][2] - x1[0][2]; const double J1_21 = x1[2][2] - x1[0][2]; const double J1_22 = x1[3][2] - x1[0][2]; // Compute sub determinants const double d1_00 = J1_11*J1_22 - J1_12*J1_21; const double d1_10 = J1_02*J1_21 - J1_01*J1_22; const double d1_20 = J1_01*J1_12 - J1_02*J1_11; // Compute determinant of Jacobian double detJ1 = J1_00*d1_00 + J1_10*d1_10 + J1_20*d1_20; // Compute inverse of Jacobian // Take absolute value of determinant detJ1 = std::abs(detJ1); // Vertices on faces static unsigned int face_vertices[4][3] = {{1, 2, 3}, {0, 2, 3}, {0, 1, 3}, {0, 1, 2}}; // Get vertices const unsigned int v0 = face_vertices[facet0][0]; const unsigned int v1 = face_vertices[facet0][1]; const unsigned int v2 = face_vertices[facet0][2];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -