⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 poisson.h

📁 Dolfin provide a high-performance linear algebra library
💻 H
📖 第 1 页 / 共 5 页
字号:
/// degrees of freedom (dofs).class UFC_PoissonBilinearForm_dof_map_1: public ufc::dof_map{private:  unsigned int __global_dimension;public:  /// Constructor  UFC_PoissonBilinearForm_dof_map_1() : ufc::dof_map()  {    __global_dimension = 0;  }  /// Destructor  virtual ~UFC_PoissonBilinearForm_dof_map_1()  {    // Do nothing  }  /// Return a string identifying the dof map  virtual const char* signature() const  {    return "FFC dof map for Discontinuous Lagrange finite element of degree 1 on a tetrahedron";  }  /// Return true iff mesh entities of topological dimension d are needed  virtual bool needs_mesh_entities(unsigned int d) const  {    switch ( d )    {    case 0:      return false;      break;    case 1:      return false;      break;    case 2:      return false;      break;    case 3:      return true;      break;    }    return false;  }  /// Initialize dof map for mesh (return true iff init_cell() is needed)  virtual bool init_mesh(const ufc::mesh& m)  {    __global_dimension = 4*m.num_entities[3];    return false;  }  /// Initialize dof map for given cell  virtual void init_cell(const ufc::mesh& m,                         const ufc::cell& c)  {    // Do nothing  }  /// Finish initialization of dof map for cells  virtual void init_cell_finalize()  {    // Do nothing  }  /// Return the dimension of the global finite element function space  virtual unsigned int global_dimension() const  {    return __global_dimension;  }  /// Return the dimension of the local finite element function space  virtual unsigned int local_dimension() const  {    return 4;  }  /// Return the number of dofs on each cell facet  virtual unsigned int num_facet_dofs() const  {    return 0;  }  /// Tabulate the local-to-global mapping of dofs on a cell  virtual void tabulate_dofs(unsigned int* dofs,                             const ufc::mesh& m,                             const ufc::cell& c) const  {    dofs[0] = 4*c.entity_indices[3][0];    dofs[1] = 4*c.entity_indices[3][0] + 1;    dofs[2] = 4*c.entity_indices[3][0] + 2;    dofs[3] = 4*c.entity_indices[3][0] + 3;  }  /// Tabulate the local-to-local mapping from facet dofs to cell dofs  virtual void tabulate_facet_dofs(unsigned int* dofs,                                   unsigned int facet) const  {    switch ( facet )    {    case 0:            break;    case 1:            break;    case 2:            break;    case 3:            break;    }  }  /// Tabulate the coordinates of all dofs on a cell  virtual void tabulate_coordinates(double** coordinates,                                    const ufc::cell& c) const  {    const double * const * x = c.coordinates;    coordinates[0][0] = x[0][0];    coordinates[0][1] = x[0][1];    coordinates[0][2] = x[0][2];    coordinates[1][0] = x[1][0];    coordinates[1][1] = x[1][1];    coordinates[1][2] = x[1][2];    coordinates[2][0] = x[2][0];    coordinates[2][1] = x[2][1];    coordinates[2][2] = x[2][2];    coordinates[3][0] = x[3][0];    coordinates[3][1] = x[3][1];    coordinates[3][2] = x[3][2];  }  /// Return the number of sub dof maps (for a mixed element)  virtual unsigned int num_sub_dof_maps() const  {    return 1;  }  /// Create a new dof_map for sub dof map i (for a mixed element)  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const  {    return new UFC_PoissonBilinearForm_dof_map_1();  }};/// This class defines the interface for a local-to-global mapping of/// degrees of freedom (dofs).class UFC_PoissonBilinearForm_dof_map_2: public ufc::dof_map{private:  unsigned int __global_dimension;public:  /// Constructor  UFC_PoissonBilinearForm_dof_map_2() : ufc::dof_map()  {    __global_dimension = 0;  }  /// Destructor  virtual ~UFC_PoissonBilinearForm_dof_map_2()  {    // Do nothing  }  /// Return a string identifying the dof map  virtual const char* signature() const  {    return "FFC dof map for Discontinuous Lagrange finite element of degree 0 on a tetrahedron";  }  /// Return true iff mesh entities of topological dimension d are needed  virtual bool needs_mesh_entities(unsigned int d) const  {    switch ( d )    {    case 0:      return false;      break;    case 1:      return false;      break;    case 2:      return false;      break;    case 3:      return true;      break;    }    return false;  }  /// Initialize dof map for mesh (return true iff init_cell() is needed)  virtual bool init_mesh(const ufc::mesh& m)  {    __global_dimension = m.num_entities[3];    return false;  }  /// Initialize dof map for given cell  virtual void init_cell(const ufc::mesh& m,                         const ufc::cell& c)  {    // Do nothing  }  /// Finish initialization of dof map for cells  virtual void init_cell_finalize()  {    // Do nothing  }  /// Return the dimension of the global finite element function space  virtual unsigned int global_dimension() const  {    return __global_dimension;  }  /// Return the dimension of the local finite element function space  virtual unsigned int local_dimension() const  {    return 1;  }  /// Return the number of dofs on each cell facet  virtual unsigned int num_facet_dofs() const  {    return 0;  }  /// Tabulate the local-to-global mapping of dofs on a cell  virtual void tabulate_dofs(unsigned int* dofs,                             const ufc::mesh& m,                             const ufc::cell& c) const  {    dofs[0] = c.entity_indices[3][0];  }  /// Tabulate the local-to-local mapping from facet dofs to cell dofs  virtual void tabulate_facet_dofs(unsigned int* dofs,                                   unsigned int facet) const  {    switch ( facet )    {    case 0:            break;    case 1:            break;    case 2:            break;    case 3:            break;    }  }  /// Tabulate the coordinates of all dofs on a cell  virtual void tabulate_coordinates(double** coordinates,                                    const ufc::cell& c) const  {    const double * const * x = c.coordinates;    coordinates[0][0] = 0.25*x[0][0] + 0.25*x[1][0] + 0.25*x[2][0] + 0.25*x[3][0];    coordinates[0][1] = 0.25*x[0][1] + 0.25*x[1][1] + 0.25*x[2][1] + 0.25*x[3][1];    coordinates[0][2] = 0.25*x[0][2] + 0.25*x[1][2] + 0.25*x[2][2] + 0.25*x[3][2];  }  /// Return the number of sub dof maps (for a mixed element)  virtual unsigned int num_sub_dof_maps() const  {    return 1;  }  /// Create a new dof_map for sub dof map i (for a mixed element)  virtual ufc::dof_map* create_sub_dof_map(unsigned int i) const  {    return new UFC_PoissonBilinearForm_dof_map_2();  }};/// This class defines the interface for the tabulation of the/// interior facet tensor corresponding to the local contribution to/// a form from the integral over an interior facet.class UFC_PoissonBilinearForm_interior_facet_integral_0: public ufc::interior_facet_integral{public:  /// Constructor  UFC_PoissonBilinearForm_interior_facet_integral_0() : ufc::interior_facet_integral()  {    // Do nothing  }  /// Destructor  virtual ~UFC_PoissonBilinearForm_interior_facet_integral_0()  {    // Do nothing  }  /// Tabulate the tensor for the contribution from a local interior facet  virtual void tabulate_tensor(double* A,                               const double * const * w,                               const ufc::cell& c0,                               const ufc::cell& c1,                               unsigned int facet0,                               unsigned int facet1) const  {    // Extract vertex coordinates    const double * const * x0 = c0.coordinates;        // Compute Jacobian of affine map from reference cell    const double J0_00 = x0[1][0] - x0[0][0];    const double J0_01 = x0[2][0] - x0[0][0];    const double J0_02 = x0[3][0] - x0[0][0];    const double J0_10 = x0[1][1] - x0[0][1];    const double J0_11 = x0[2][1] - x0[0][1];    const double J0_12 = x0[3][1] - x0[0][1];    const double J0_20 = x0[1][2] - x0[0][2];    const double J0_21 = x0[2][2] - x0[0][2];    const double J0_22 = x0[3][2] - x0[0][2];          // Compute sub determinants    const double d0_00 = J0_11*J0_22 - J0_12*J0_21;        const double d0_10 = J0_02*J0_21 - J0_01*J0_22;        const double d0_20 = J0_01*J0_12 - J0_02*J0_11;          // Compute determinant of Jacobian    double detJ0 = J0_00*d0_00 + J0_10*d0_10 + J0_20*d0_20;          // Compute inverse of Jacobian        // Take absolute value of determinant    detJ0 = std::abs(detJ0);        // Extract vertex coordinates    const double * const * x1 = c1.coordinates;        // Compute Jacobian of affine map from reference cell    const double J1_00 = x1[1][0] - x1[0][0];    const double J1_01 = x1[2][0] - x1[0][0];    const double J1_02 = x1[3][0] - x1[0][0];    const double J1_10 = x1[1][1] - x1[0][1];    const double J1_11 = x1[2][1] - x1[0][1];    const double J1_12 = x1[3][1] - x1[0][1];    const double J1_20 = x1[1][2] - x1[0][2];    const double J1_21 = x1[2][2] - x1[0][2];    const double J1_22 = x1[3][2] - x1[0][2];          // Compute sub determinants    const double d1_00 = J1_11*J1_22 - J1_12*J1_21;        const double d1_10 = J1_02*J1_21 - J1_01*J1_22;        const double d1_20 = J1_01*J1_12 - J1_02*J1_11;          // Compute determinant of Jacobian    double detJ1 = J1_00*d1_00 + J1_10*d1_10 + J1_20*d1_20;          // Compute inverse of Jacobian        // Take absolute value of determinant    detJ1 = std::abs(detJ1);        // Vertices on faces    static unsigned int face_vertices[4][3] = {{1, 2, 3}, {0, 2, 3}, {0, 1, 3}, {0, 1, 2}};        // Get vertices    const unsigned int v0 = face_vertices[facet0][0];    const unsigned int v1 = face_vertices[facet0][1];    const unsigned int v2 = face_vertices[facet0][2];       

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -