📄 referencecells_common.tex
字号:
\index{reference cells}The following five reference cells are covered by the UFC specification:the reference \emph{interval},the reference \emph{triangle},the reference \emph{quadrilateral},the reference \emph{tetrahedron} andthe reference \emph{hexahedron}.\begin{table}[H]\linespread{1.2}\selectfont \begin{center} \begin{tabular}{|l|c|c|c|} \hline Reference cell & Dimension & \#Vertices & \#Facets \\ \hline \hline The reference interval & 1 & 2 & 2 \\ \hline The reference triangle & 2 & 3 & 3 \\ \hline The reference quadrilateral & 2 & 4 & 4 \\ \hline The reference tetrahedron & 3 & 4 & 4 \\ \hline The reference hexahedron & 3 & 8 & 6 \\ \hline \end{tabular} \caption{Reference cells covered by the UFC specification.} \end{center}\end{table}The UFC specification assumes that each cell in a finite element meshis always isomorphic to one of the reference cells.\newpage\section{The reference interval}\index{interval}The reference interval is shown in Figure~\ref{fig:interval} and isdefined by its two vertices with coordinates as specified inTable~\ref{tab:interval,vertices}.\begin{figure}[H] \begin{center} \psfrag{0}{$0$} \psfrag{1}{$1$} \includegraphics[width=10cm]{eps/interval.eps} \caption{The reference interval.} \label{fig:interval} \end{center}\end{figure}\begin{table}[H]\linespread{1.2}\selectfont \begin{center} \begin{tabular}{|c|c|} \hline Vertex & Coordinate \\ \hline \hline $v_0$ & $x = 0$ \\ \hline $v_1$ & $x = 1$ \\ \hline \end{tabular} \caption{Vertex coordinates of the reference interval.} \label{tab:interval,vertices} \end{center}\end{table}\newpage\section{The reference triangle}\index{triangle}The reference triangle is shown in Figure~\ref{fig:triangle} and isdefined by its three vertices with coordinates as specified inTable~\ref{tab:triangle,vertices}.\begin{figure}[H] \begin{center} \psfrag{v0}{$(0, 0)$} \psfrag{v1}{$(1, 0)$} \psfrag{v2}{$(0, 1)$} \includegraphics[width=8cm]{eps/triangle.eps} \caption{The reference triangle.} \label{fig:triangle} \end{center}\end{figure}\begin{table}[H]\linespread{1.2}\selectfont \begin{center} \begin{tabular}{|c|c|} \hline Vertex & Coordinate \\ \hline \hline $v_0$ & $x = (0, 0)$ \\ \hline $v_1$ & $x = (1, 0)$ \\ \hline $v_2$ & $x = (0, 1)$ \\ \hline \end{tabular} \caption{Vertex coordinates of the reference triangle.} \label{tab:triangle,vertices} \end{center}\end{table}\newpage\section{The reference quadrilateral}\index{quadrilateral}The reference quadrilateral is shown in Figure~\ref{fig:quadrilateral}and is defined by its four vertices with coordinates as specified inTable~\ref{tab:quadrilateral,vertices}.\begin{figure}[H] \begin{center} \psfrag{v0}{$(0, 0)$} \psfrag{v1}{$(1, 0)$} \psfrag{v2}{$(1, 1)$} \psfrag{v3}{$(0, 1)$} \includegraphics[width=8cm]{eps/quadrilateral.eps} \caption{The reference quadrilateral.} \label{fig:quadrilateral} \end{center}\end{figure}\begin{table}[H]\linespread{1.2}\selectfont \begin{center} \begin{tabular}{|c|c|} \hline Vertex & Coordinate \\ \hline \hline $v_0$ & $x = (0, 0)$ \\ \hline $v_1$ & $x = (1, 0)$ \\ \hline $v_2$ & $x = (1, 1)$ \\ \hline $v_3$ & $x = (0, 1)$ \\ \hline \end{tabular} \caption{Vertex coordinates of the reference quadrilateral.} \label{tab:quadrilateral,vertices} \end{center}\end{table}\newpage\section{The reference tetrahedron}\index{tetrahedron}The reference tetrahedron is shown in Figure~\ref{fig:tetrahedron} andis defined by its four vertices with coordinates as specified inTable~\ref{tab:tetrahedron,vertices}.\begin{figure}[H] \begin{center} \psfrag{v0}{$(0, 0, 0)$} \psfrag{v1}{$(1, 0, 0)$} \psfrag{v2}{$(0, 1, 0)$} \psfrag{v3}{$(0, 0, 1)$} \includegraphics[width=6cm]{eps/tetrahedron.eps} \caption{The reference tetrahedron.} \label{fig:tetrahedron} \end{center}\end{figure}\begin{table}[H]\linespread{1.2}\selectfont \begin{center} \begin{tabular}{|c|c|} \hline Vertex & Coordinate \\ \hline \hline $v_0$ & $x = (0, 0, 0)$ \\ \hline $v_1$ & $x = (1, 0, 0)$ \\ \hline $v_2$ & $x = (0, 1, 0)$ \\ \hline $v_3$ & $x = (0, 0, 1)$ \\ \hline \end{tabular} \caption{Vertex coordinates of the reference tetrahedron.} \label{tab:tetrahedron,vertices} \end{center}\end{table}\newpage\section{The reference hexahedron}\index{hexahedron}The reference hexahedron is shown in Figure~\ref{fig:hexahedron} andis defined by its eight vertices with coordinates as specified inTable~\ref{tab:hexahedron,vertices}.\begin{figure}[H]\linespread{1.2}\selectfont \begin{center} \psfrag{v0}{$(0, 0, 0)$} \psfrag{v1}{$(1, 0, 0)$} \psfrag{v2}{$(1, 1, 0)$} \psfrag{v3}{$(0, 1, 0)$} \psfrag{v4}{$(0, 0, 1)$} \psfrag{v5}{$(1, 0, 1)$} \psfrag{v6}{$(1, 1, 1)$} \psfrag{v7}{$(0, 1, 1)$} \includegraphics[width=9cm]{eps/hexahedron.eps} \caption{The reference hexahedron.} \label{fig:hexahedron} \end{center}\end{figure}\begin{table}[H]\linespread{1.2}\selectfont \begin{center} \begin{tabular}{|c|c|} \hline Vertex & Coordinate \\ \hline \hline $v_0$ & $x = (0, 0, 0)$ \\ \hline $v_1$ & $x = (1, 0, 0)$ \\ \hline $v_2$ & $x = (1, 1, 0)$ \\ \hline $v_3$ & $x = (0, 1, 0)$ \\ \hline \end{tabular} \begin{tabular}{|c|c|} \hline Vertex & Coordinate \\ \hline \hline $v_4$ & $x = (0, 0, 1)$ \\ \hline $v_5$ & $x = (1, 0, 1)$ \\ \hline $v_6$ & $x = (1, 1, 1)$ \\ \hline $v_7$ & $x = (0, 1, 1)$ \\ \hline \end{tabular} \caption{Vertex coordinates of the reference hexahedron.} \label{tab:hexahedron,vertices} \end{center}\end{table}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -